Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
a: \(P\left(x\right)=5x^3-4x+7\)
Bậc 3
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
Bậc 3
b: M(x)=P(x)+Q(x)
=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
c: M(x)=0
=>2-x^2=0
=>\(x=\pm\sqrt{2}\)
`@``dn10`
`a,`
`P(x)=-2x^5-3x^4+2x^5+2x-0,6`
`P(x)=(-2x^5+2x^5)-3x^4+2x-0,6`
`P(x)=-3x^4+2x-0,6`
`b,`
Thay `x=1` vào đa thức `B(x)`
`B(1)=-4*1^3+6*1-4=-4*1+6-4=-4+6-4=2-4=-2`
a: =-2x^5+2x^5+3x^4+2x-0,6
=3x^4+2x-0,6
b: B(1)=-4+6-4=-8+6=-2
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
a: A(x)=3x^5+x^4-x^2+x
B(x)=3x^5-x^4+x^2+x-2
b: M(x)=B(x)-A(x)
=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x
=-2x^4+2x^2+2x-2
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1