K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)

b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{0;-2;2;-4\right\}\)

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

5 tháng 1 2022

\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

5 tháng 1 2022

\(=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

\(=\dfrac{\left(x+1\right)^3}{x+1}=x^2+2x+1\)

Phần dư là 0

31 tháng 10 2020

Bài 1.

x^3 + 3x^2 + 3 x^3 + 1 1 1 x^3 - 3x^2 + 2

3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp

Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2

Bài 2.

Ta có : x3 + 3x2 + 3x + a có bậc là 3

x + 2 có bậc là 1

=> Thương bậc 2

lại có hệ số cao nhất của đa thức bị chia là 1

Đặt đa thức thương là x2 + bx + c

khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2

<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )

<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c

<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)

Vậy a = 2

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

24 tháng 12 2021

b: \(\dfrac{A\left(x\right)}{B\left(x\right)}=\dfrac{x^4-\dfrac{1}{2}x^3+\dfrac{1}{2}x^3-\dfrac{1}{4}x^2+\dfrac{9}{4}x^2-\dfrac{9}{8}x-\dfrac{15}{8}x+\dfrac{15}{16}+a-\dfrac{1}{16}}{2x-1}\)

Để A(x) chia hết cho B(x) thì a-1/16=0

hay a=1/16