Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)
Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
Câu 1:
\(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)
Câu 2:
\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
Câu 3:
\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)
Câu 4:
Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD
Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
1/
a) \(x^2+4y^2+4xy-16\)
\(=x^2+2.2xy+\left(2y\right)^2-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) ta có:
\(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)
\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)
\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)
\(=y^2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x
nên tại y = 10
giá trị của biểu thức trên bằng y2 = 102 = 100
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Lời giải:
a)
$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$
Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
b)
$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$
$=7-(x^2-2x+1)-(4y^2+4y+1)$
$=7-(x-1)^2-(2y+1)^2$
Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$
\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)
\(=x^2+2x+3\)