Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Đa giác đều có 20 cạnh thì sẽ có tất cả 10 đường chéo đi qua tâm của đa giác.
Một hình chữ nhật được tạo thành từ 2 đường chéo đi qua tâm, suy ra số hình chữ nhật được tạo thành là C210C102
Hình vuông được tạo thành từ 2 đường chéo vuông góc nhau, ta có tất cả 5 cặp đường chéo vuông góc nhau, suy ra có tất cả 5 hình vuông.
Vậy có 40 hình chữ nhật (không phải hình vuông) được tạo thành.
Không gian mẫu \(\Omega\) là tập hợp tất cả các cách chọn ngẫu nhiên 4 đỉnh trong 12 đỉnh
Ta có \(n\left(\Omega\right)=C_{12}^4=495\)
Gọi A là biến cố : 4 đỉnh được chọn tạo thành một hình chữ nhật"
Gọi đường chéo của đa giác đều \(A_1A_2A_3...A_{12}\) đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có 6 đường chéo lớn.
Mỗi hình chữ nhật có các đỉnh là 4 đỉnh trong 12 điểm \(A_1,A_2,A_3,...A_{12}\) có các đường chéo là 2 đường chéo lớn. Ngược lại, mỗi cặp đường chéo lớn có các đầu mút là 4 đỉnh của một hình chữ nhâtk.
Do đó, số hình chữ nhật được tạo thành là : \(n\left(A\right)=C_6^2=15\)
Vậy xác suất cần tính là \(P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{15}{495}=\frac{1}{33}\)
Số vecto tạo từ 2n điểm là: \(A_{2n}^2\)
Đa giác đều 2n đỉnh có n đường chéo, cứ 2 đường chéo cho ta 1 hình chữ nhật tương ứng, do đó số hình chữ nhật có đỉnh là đỉnh của đa giác đều là: \(C_n^2\)
\(\Rightarrow A_{2n}^2=9C_n^2\Leftrightarrow\dfrac{\left(2n\right)!}{\left(2n-2\right)!}=\dfrac{9.n!}{2!.\left(n-2\right)!}\)
\(\Leftrightarrow2n\left(2n-1\right)=\dfrac{9n\left(n-1\right)}{2}\)
\(\Leftrightarrow n=5\)
dạ em chưa hiểu tại sao số vecto tạo từ 2n điểm và số hình chữ nhật có đỉnh là đỉnh của đa giác đều lại ra được như kia vậy ạ :(((
Tất cả các cạnh của tứ giác là đường chéo khi 4 đỉnh đó ko có 2 đỉnh nào liền kề nhau.
Cố định một đỉnh, có n cách chọn
Chọn đỉnh thứ 2 cách đỉnh thứ nhất \(x_1\) đỉnh, đỉnh thứ 3 cách đỉnh 2 \(x_2\) ; đỉnh thứ 4 cách đỉnh thứ 3 \(x_3\) và cách đỉnh thứ nhất \(x_4\) đỉnh (với \(x_i\ge1\))
\(\Rightarrow x_1+x_2+x_3+x_4=n-4\)
Theo nguyên lý chia kẹo Euler, số nghiệm của pt trên là: \(C_{n-5}^3\)
Vậy số đa giác thỏa mãn là: \(\frac{nC_{n-5}^3}{4}\)
Xác suất: \(P=\frac{nC_{n-5}^3}{4C_n^4}=\frac{30}{91}\) \(\Rightarrow n=15\)
a/ Có 240 vecto nên có 120 đoạn thẳng được tạo ra
\(\Rightarrow C_n^2=120\Rightarrow n=16\)
b/ Số vecto là 130 \(\Rightarrow\) số đường chéo là 65
\(\Rightarrow C_n^2-n=65\Rightarrow n=13\)
a. Tại sao 240 vecto lại có 120 đoạn thẳng?
b. Tại sao 130 vecto lại có 65 đường chéo?
Không phải là 1 vecto tương ứng với 1 đoạn thẳng à?
Sao số vecto lại phải chia 2 ra để có số đoạn thẳng?