Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)
Do đó diện tích xq của hình nón là:
\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)
Đáp án C
Giả sử đa diện (H)(H) có các đỉnh là A1,…AdA1,…Ad, gọi m1,…mdm1,…md lần lượt là số các mặt của (H)(H) nhận chúng là đỉnh chung, ở đó m1,…mdm1,…md là những số lẻ.
Như vậy mỗi đỉnh AkAk có mkmk cạnh đi qua.
Ta có: đỉnh A1A1 có m1m1 cạnh đi qua.
đỉnh A2A2 có m2m2 cạnh đi qua.
...
đỉnh AdAd có mdmd cạnh đi qua.
Do đó số các cạnh (có thể trùng nhau) của đa diện là m1+m2+...+mdm1+m2+...+md.
Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.
Vậy số cạnh thực tế của (H)(H) bằng
c=12(m1+m2+...+md)c=12(m1+m2+...+md)
Vì cc là số nguyên, m1,…mdm1,…md là những số lẻ nên dd phải là số chẵn.
Ví dụ : Hình chóp ngũ giác.
Đỉnh S là đỉnh chung của 5 mặt, tất cả các đỉnh còn lại là đỉnh chung của 3 mặt, hình chóp ngũ giác có 6 đỉnh
giup mình cày Sp vơi
Lần sau em đăng trong h.vn
1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)
Đáp án B:
2. \(f'\left(x\right)=-4x^3+8x\)
\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)
Có BBT:
x -căn2 0 căn2 f' f 0 0 0 - + - +
Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C
Gọi cạnh của tứ diện đều ABCD là a thì cạnh của hình bát diện đều (H) là \(\dfrac{a}{2}\). Khi đó :
\(V_{ABCD}=a^3\dfrac{\sqrt{2}}{12};V_{\left(H\right)}=\dfrac{1}{3}\left(\dfrac{a}{2}\right)^3\sqrt{2}=a^3\dfrac{\sqrt{2}}{24}\)
Từ đó suy ra :
\(\dfrac{V_{\left(H\right)}}{V_{ }ABCD}=\dfrac{1}{2}\)
Gọi O là tâm đáy \(\Rightarrow SO=\sqrt{SA^2-OC^2}=\sqrt{SA^2-\left(\frac{AC}{2}\right)^2}=\frac{a\sqrt{6}}{2}\)
Gọi I là điểm sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}+\overrightarrow{IS}=0\)
\(\Leftrightarrow4.\overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{IS}=0\)
\(\Leftrightarrow4\overrightarrow{IO}+\overrightarrow{IS}=0\Rightarrow\overrightarrow{IO}=-\frac{1}{4}\overrightarrow{IS}\)
\(\Rightarrow I\) nằm trên đoạn thẳng SO và chia SO theo tỉ lệ \(IO=\frac{1}{4}IS\Rightarrow IS=\frac{4}{5}SO=\frac{2a\sqrt{6}}{5}\)
Ta có:
\(Q=MA^2+MB^2+MC^2+MD^2+MS^2\)
\(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IS}\right)^2\)
\(=5MI^2+IA^2+IB^2+IC^2+ID^2+IS^2\)
Mà I cố định \(\Rightarrow Q_{min}\) khi và chỉ khi \(MI_{min}\)
\(\Rightarrow\) M là hình chiếu vuông góc của I lên (SCD)
A B C D S O I M N
Gọi N là trung điểm CD, kẻ \(IM\perp SN\Rightarrow IM\perp\left(SCD\right)\)
\(SN=\sqrt{SO^2+ON^2}=\frac{a\sqrt{7}}{2}\Rightarrow SM=SI.cos\widehat{NSI}=\frac{SI.SO}{SN}=\frac{12a\sqrt{7}}{35}\)
\(\Rightarrow\frac{d\left(M;\left(ACD\right)\right)}{SO}=1-\frac{SM}{SN}=1-\frac{24}{35}=\frac{11}{35}\)
\(\frac{S_{ACD}}{S_{ABCD}}=\frac{1}{2}\)
\(\Rightarrow\frac{V_2}{V_1}=\frac{d\left(M;\left(ACD\right)\right).S_{ACD}}{SO.S_{ABCD}}=\frac{11}{35}.\frac{1}{2}=\frac{11}{70}\)