Cho (d1): y = -x + 1, (d2): y = x + 1, (d3): y = -1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

a)(P):

x-2-1012
y-2-1/20-1/2-2

(d): x =0 => y =- 4

     y = 0 => x =4 

26 tháng 11 2022

b: Tọa độ giao là:

-1/2x+5=1/3x+1 và y=1/3x+1

=>-5/6x=-4 và y=1/3x+1

=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5

c: Vì (d3)//(d1) nên (d3): y=-1/2x+b

Thay y=2 vào (d2), ta được:

x/3+1=2

=>x=3

Thay x=3 và y=2 vào y=-1/2x+b, ta được:

b-3/2=2

=>b=7/2

d: Thay x=24/5 và y=13/5 vào (d4), ta được:

24/5(m-3)+m+1=13/5

=>24/5m-72/5+m+1=13/5

=>29/5m-67/5=13/5

=>29/5m=80/5

=>m=80/5:29/5=80/5*5/29=80/29

30 tháng 3 2019

Hoành độ giao điểm (P) và (d) là :

\(\frac{1}{2}x^2-\frac{1}{4}x-\frac{3}{2}=0\)\(\Leftrightarrow2x^2-x-6=0\)( a=2; b=-1; c=-6)

\(\Delta=b^2-4ac=\left(-1\right)^2-4.2.\left(-6\right)=49>0\)

Vậy pt có 1 no phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+7}{2\cdot2}=2\); \(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-7}{2.2}=-\frac{3}{2}\)

Khi \(x_1\)=2\(\Rightarrow y_1=\frac{1}{2}.2^2=2\Rightarrow A\left(2;2\right)\)

Khi \(x_2=-\frac{3}{2}\Rightarrow y_2=\frac{1}{2}.\left(-\frac{3}{2}\right)^2=\frac{9}{8}\)

Do đó: \(T=x_1+\frac{x_2}{y_1}+y_2=2+\left(\frac{-\frac{3}{2}}{2}\right)+\frac{9}{8}=\frac{19}{8}\)

13 tháng 11 2017

a)

g(x) = 2x - 3 g(x) = 2x - 3 f: 0.5x + y = 2 f: 0.5x + y = 2 TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3”

b) Do (D3) // (D1) nên \(a=-\frac{1}{2}\)

Vậy thì phương trình của (D3) là \(y=-\frac{1}{2}x+b\)

Do (D3) qua điểm (2;-2) nên \(-\frac{1}{2}.2+b=-2\Rightarrow b=-1\)

Vậy (D3)  : \(y=-\frac{1}{2}x-1\)