K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

9T1

17 tháng 9 2021

9T1

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

5 tháng 12 2018

a) Gọi M(x0;y0) là điểm cố dịnh mà (d) luôn đi qua

Ta có: M(x0;y0) thuộc (d) : \(y_0=\left(3m-2\right)x_0+m-2\)

                           \(\Leftrightarrow3mx_0-2x_0+m-2-y_0=0\)

                            \(\Leftrightarrow m\left(3x_0+1\right)-\left(2x_0+y_0\right)=0\)

                             \(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\2x_0+y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=\frac{-1}{3}\\2.\left(\frac{-1}{3}\right)+y_0=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=\frac{-1}{3}\\y_0=\frac{2}{3}\end{cases}}}\)

Vậy \(M\left(\frac{-1}{3};\frac{2}{3}\right)\) là điểm cố định mà (d) luôn đi qua với mọi giá trị của m

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Lời giải:

a. Gọi $I(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua. Ta có:

$y_0=(m+1)x_0-m+2, \forall m$

$m(x_0-1)+(x_0+2-y_0)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x_0-1=0\\ x_0+2-y_0=0\end{matrix}\right.\Leftrightarrow \Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=3\end{matrix}\right.\)

Vậy $I(1,3)$ là điểm cố định mà $d$ luôn đi qua với mọi $m$

b. 

$A(0,a)$ là giao của $(d)$ với trục $Oy$

$B(b,0)$ là giao của $(d)$ với trục $Ox$

Nếu $m=-1$ thì $y=3$

Khi đó, khoảng cách từ $O$ đến $(d)$ là $3$

Nếu $m\neq -1$ thì:

$a=(m+1).0-m+2=-m+2$

$b=\frac{m-2}{m+1}$

Theo hệ thức lượng trong tam giác vuông thì khoảng cách từ $O$ đến $(d)$ là $h$ thì:

$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$

$=\frac{1}{(m-2)^2}+\frac{(m+1)^2}{(m-2)^2}=\frac{m^2+2m+2}{(m-2)^2}$
$\Rightarrow h=\frac{|m-2|}{\sqrt{m^2+2m+2}}$

5 tháng 12 2016

y = kx +3 <=>kx+3-y=0 => x=0,y=3

đường thẳng d luôn đi qua một điểm cố định(0;3)

b)khoảgn cách từ gốc toạ độ O tới đường thẳng d bằng căn 2 của x^2+y^2

=>x^2+y^2=4  (1)

Thế y = kx +3, \(x^2+\left(kx+3\right)^2=4\)

\(x^2\left(1+k^2\right)+6kx+5=0\)có nghiệm khi k>=\(\frac{\sqrt{5}}{3}\)

c)

6 tháng 12 2016

phần c ?