Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét phương trình hoành độ của (P) với Ox : \(\Rightarrow\left\{{}\begin{matrix}OA\left(\dfrac{4}{3};0\right)\\OB\left(-1;0\right)\end{matrix}\right.\)
- Từ đồ thị hàm số \(\Rightarrow S_{ABMN}=\dfrac{1}{2}\left(\left|AB\right|+\left|MN\right|\right).\left|m\right|=4\)
\(\Rightarrow\left(\dfrac{7}{3}+\left|MN\right|\right).\left(-m\right)=8\)
\(\Rightarrow\left|MN\right|=-\dfrac{8}{m}-\dfrac{7}{3}\)
\(\Rightarrow MN^2=\dfrac{64}{m^2}+\dfrac{112}{3m}+\dfrac{49}{9}\)
- Xét phương trình hoành độ giao điểm (P) và d :\(3x^2-x-m-4=0\)
Có : \(\Delta=b^2-4ac=1-4.3\left(-m-4\right)=12m+49\)
- Để P cắt d tại hai điểm phân biệt <=> \(m>-\dfrac{49}{12}\)
\(\Rightarrow-\dfrac{49}{12}< m< 0\)
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{3}\\x_1x_2=-\dfrac{m+4}{3}\end{matrix}\right.\)
Thấy : \(\left|MN\right|=\left|x_1\right|+\left|x_2\right|\)
\(\Rightarrow MN^2=x^2_1+2\left|x_1x_2\right|+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|\)
\(\Rightarrow\dfrac{2\left(m+4\right)}{3}+\dfrac{2}{3}\left|m+4\right|=\dfrac{64}{m^2}+\dfrac{112}{3m}+\dfrac{16}{3}\)
TH1 : \(m+4< 0\)
\(\Rightarrow16m^2+112m+192=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-3\\m=-4\end{matrix}\right.\)
TH2 : \(m+4\ge0\)
\(\Rightarrow\dfrac{4\left(m+4\right)m^2}{3m^2}=\dfrac{16m^2+112m+192}{3m^2}\)
\(\Rightarrow4m^3-112m-192=0\)
( Đoạn này giải máy nha cho nhanh nếu ko tách đc bl để mk tách cho )
\(\Rightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\)
Vậy ...
Lời giải:
Đặt \(2m^2+1=t\)
Gọi \(A(x_A, tx_A+2); B(x_B; tx_B+2)\)
PT hoành độ giao điểm $(P)$ và $(d)$ là:
\(x^2-3x+1-(tx+2)=0\)
\(\Leftrightarrow x^2-(t+3)x-1=0\)
Theo định lý Viete: \(\left\{\begin{matrix} x_A+x_B=t+3\\ x_Ax_B=-1\end{matrix}\right.\)
Để thỏa mãn tam giác $MBA$ vuông cân tại $M$ thì:
\(\left\{\begin{matrix} |\overrightarrow{MA}|=|\overrightarrow{MB}|\\ \overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow {0}\end{matrix}\right.\)
Trước hết : \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow (x_A-3, tx_A-1)(x_B-3, tx_B-1)=\overrightarrow{0}\)
\(\Leftrightarrow (x_A-3)(x_B-3)+(tx_A-1)(tx_B-1)=0\)
\(\Leftrightarrow x_Ax_B-3(x_A+x_B)+9+t^2x_Ax_B-t(x_A+x_B)+1=0\)
\(\Leftrightarrow -1-3(t+3)+9-t^2-t(t+3)+1=0\)
\(\Leftrightarrow -2t^2-6t=0\Leftrightarrow t=0\) hoặc $t=-3$
Hiển nhiên \(t=2m^2+1>0\) với mọi $m$ nên vô lý
Do đó không tồn tại $m$ thỏa mãn.