Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MHO=góc MBO=góc MAO=90 độ
=>M,A,O,B,H nội tiếp
b: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại I
Xét ΔOIK vuông tại I và ΔOHM vuông tại H có
góc IOK chung
=>ΔOIK đồng dạng với ΔOHM
=>OI/OH=OK/OM
=>OI*OM=OH*OK
a: Ta có: \(\widehat{OHM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,H,M,A,B cùng thuộc đường tròn đường kính OM
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại I
Xét ΔOIK vuông tại I và ΔOHM vuông tại H có
\(\widehat{IOK}\) chung
Do đó; ΔOIK~ΔOHM
=>\(\dfrac{OI}{OH}=\dfrac{OK}{OM}\)
=>\(OI\cdot OM=OK\cdot OH\)
a) Tứ giác AOBE nội tiếng ( 2 góc đối = 180 độ )
b) tam giác OMH đồng dạng tam giác OIK ( góc hóc) ==> đpcm
c) Có MI vuông góc AB, IA=IB==> tam gisc MAB cân tại M
đồng thời E cách đều AB, ==> đpcm