\(\perp\) D

b EH ( H...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

a . Áp dụng đl pytago đảo vào t/g DEF có :

DE^2 = EF^2 - DF^2  = 5^2 - 3^2 = 16 

 DE = 4 

=> t/g DEF là tg vuông .

c . K ; H và M cùng nằm trên 1 đường thẳng  không tạo t/g đc e nhé!

a: Xét ΔEDF có \(EF^2=ED^2+DF^2\)

nen ΔEDF vuông tại D

b: Xét ΔEDI vuông tại D và ΔEHI vuông tại H có

EI chung

góc DEI=góc HEI

Do đó: ΔEDI=ΔEHI

Suy ra: ID=IH

a: Xét ΔEHD và ΔEHF có

EH chung

\(\widehat{DEH}=\widehat{FEH}\)

ED=EF

Do đó: ΔEHD=ΔEHF

b: Xét ΔEPH vuông tại P và ΔEMH vuông tại M có

EH chung

\(\widehat{PEH}=\widehat{MEH}\)

Do đó: ΔEPH=ΔEMH

=>HP=HM

c: ΔDEF cân tại E

mà EH là đường phân giác

nên EH\(\perp\)DF và H là trung điểm của DF

H là trung điểm của DF

=>DH=HF=DF/2=6/2=3(cm)

ΔEHD vuông tại H

=>\(EH^2+HD^2=ED^2\)

=>\(EH^2+3^2=5^2\)

=>\(EH^2=5^2-3^2=25-9=16\)

=>\(EH=\sqrt{16}=4\left(cm\right)\)

1) Xét ΔEHD vuông tại H và ΔFHD vuông tại H có

DE=DF(ΔDEF cân tại D)

DH là cạnh chung

Do đó: ΔEHD=ΔFHD(cạnh huyền-cạnh góc vuông)

\(\widehat{HDE}=\widehat{HDF}\)(hai góc tương ứng)

2) Xét ΔMDH vuông tại M và ΔNDH vuông tại N có

DH là cạnh chung

\(\widehat{MDH}=\widehat{NDH}\)(\(\widehat{HDE}=\widehat{HDF}\), M∈DE, N∈DF)

Do đó: ΔMDH=ΔNDH(cạnh huyền-góc nhọn)

⇒HM=HN(hai cạnh tương ứng)

3) Xét ΔHME vuông tại M và ΔHNF vuông tại N có

HE=HF(ΔHDE=ΔHDF)

\(\widehat{E}=\widehat{F}\)(hai góc ở đáy của ΔDEF cân tại D)

Do đó: ΔHME=ΔHNF(cạnh huyền-góc nhọn)(đpcm)

15 tháng 2 2017

Bai 3 :

N M P 20 25

Áp dụng định lí Py - ta - go vào \(\Delta MNP\)vuông tại N:

MP2 = NP2 + MN2

252 = NP2 + 202

=> NP2 = 625 - 400

=> NP2 = 225

=> NP = 15

15 tháng 2 2017

Bài 3 :

D E F

Ta có :

EF2 = 262 = 676

DE2 + DF2 = 102 + 242 = 676

=> EF2 = DE2 + DF2

Vậy \(\Delta EDF\) là tam giác vuông tại D