Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDF có \(EF^2=ED^2+DF^2\)
nen ΔEDF vuông tại D
b: Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
góc DEI=góc HEI
Do đó: ΔEDI=ΔEHI
Suy ra: ID=IH
a: Xét ΔEHD và ΔEHF có
EH chung
\(\widehat{DEH}=\widehat{FEH}\)
ED=EF
Do đó: ΔEHD=ΔEHF
b: Xét ΔEPH vuông tại P và ΔEMH vuông tại M có
EH chung
\(\widehat{PEH}=\widehat{MEH}\)
Do đó: ΔEPH=ΔEMH
=>HP=HM
c: ΔDEF cân tại E
mà EH là đường phân giác
nên EH\(\perp\)DF và H là trung điểm của DF
H là trung điểm của DF
=>DH=HF=DF/2=6/2=3(cm)
ΔEHD vuông tại H
=>\(EH^2+HD^2=ED^2\)
=>\(EH^2+3^2=5^2\)
=>\(EH^2=5^2-3^2=25-9=16\)
=>\(EH=\sqrt{16}=4\left(cm\right)\)
1) Xét ΔEHD vuông tại H và ΔFHD vuông tại H có
DE=DF(ΔDEF cân tại D)
DH là cạnh chung
Do đó: ΔEHD=ΔFHD(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{HDE}=\widehat{HDF}\)(hai góc tương ứng)
2) Xét ΔMDH vuông tại M và ΔNDH vuông tại N có
DH là cạnh chung
\(\widehat{MDH}=\widehat{NDH}\)(\(\widehat{HDE}=\widehat{HDF}\), M∈DE, N∈DF)
Do đó: ΔMDH=ΔNDH(cạnh huyền-góc nhọn)
⇒HM=HN(hai cạnh tương ứng)
3) Xét ΔHME vuông tại M và ΔHNF vuông tại N có
HE=HF(ΔHDE=ΔHDF)
\(\widehat{E}=\widehat{F}\)(hai góc ở đáy của ΔDEF cân tại D)
Do đó: ΔHME=ΔHNF(cạnh huyền-góc nhọn)(đpcm)
Bai 3 :
N M P 20 25
Áp dụng định lí Py - ta - go vào \(\Delta MNP\)vuông tại N:
MP2 = NP2 + MN2
252 = NP2 + 202
=> NP2 = 625 - 400
=> NP2 = 225
=> NP = 15
Bài 3 :
D E F
Ta có :
EF2 = 262 = 676
DE2 + DF2 = 102 + 242 = 676
=> EF2 = DE2 + DF2
Vậy \(\Delta EDF\) là tam giác vuông tại D
a . Áp dụng đl pytago đảo vào t/g DEF có :
DE^2 = EF^2 - DF^2 = 5^2 - 3^2 = 16
DE = 4
=> t/g DEF là tg vuông .
c . K ; H và M cùng nằm trên 1 đường thẳng không tạo t/g đc e nhé!