K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:
a. Xét tam giác $ABM$ và $AHM$ có:

$AB=AH$

$AM$ chung

$\widehat{BAM}=\widehat{HAM}$ (do $AM$ là phân giác $\widehat{BAC}$)

$\Rightarrow \triangle ABM=\triangle AHM$ (c.g.c)

$\Rightarrow BM=HM$

b.

Gọi $O$ là giao điểm $AM, BH$

Xét tam giác $ABO$ và $AHO$ có:

$AB=AH$

$AO$ chung

$\widehat{BAO}=\widehat{HAO}$ (do $AM$ là phân giác $\widehat{BAC}$)

$\Rightarrow \triangle ABO=\triangle AHO$ (c.g.c)

$\Rightarrow \widehat{AOB}=\widehat{AOH}$

Mà $\widehat{AOB}+\widehat{AOH}=180^0$

$\Rightarrow \widehat{AOB}=\widehat{AOH}=90^0$

$\Rightarrow AM\perp BH$ tại $O$

c.

Từ tam giác bằng nhau phần a suy ra $BM=MH(1)$ và $\widehat{MHA}=\widehat{MBA}=90^0$

$\Rightarrow MH\perp AC$

$\Rightarrow MHC$ là tam giác vuông tại $H$

$\Rightarrow MC> MH$ (do $MC$ là cạnh huyền) (2)

Từ $(1); (2)\Rightarrow MC> MB$

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Hình vẽ:

a: ΔCAM cân tại C

=>góc CAM=góc CMA

b: góc HAM+góc CMA=90 độ

góc BAM+góc CAM=90 độ

mà góc CMA=góc CAM

nên góc HAM=góc BAM

=>ĐPCM

c: Xét ΔAHM và ΔANM có

AH=AN

góc HAM=góc NAM

AM chung

=>ΔAHM=ΔANM

=>góc AHM=góc ANM=90 độ

=>MN vuông góc AB

11 tháng 3 2018

Hình thì bạn tự vẽ nha 

a . Do CM = CA 

=> tam giác MCA cân tại C 

=> góc CAM = góc CMA ( 2 góc ở đáy ) 

b . 

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
8 tháng 4 2018

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

a) Xét ΔAMB vuông tại A và ΔHMB vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔAMB=ΔHMB(Cạnh huyền-góc nhọn)

Suy ra: AM=HM(Hai cạnh tương ứng)