Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Thừa nhận định lý: trên đường thẳng BC với điểm M thuộc BC và điểm A bất kỳ thì \(\dfrac{MC}{BC}\).\(\overrightarrow{AB}\) + \(\dfrac{BM}{BC}\).\(\overrightarrow{AC} = \overrightarrow{AM}\)(tạm thời thì mình đang gấp, chưa chúng minh được) cái này là định lý ngoài nha, đừng vẽ lên hình
Gọi điểm A' là giao điểm của AI và BC
áp dụng định lý trên: \(\overrightarrow{IA'} = \dfrac{A'C}{BC}.\overrightarrow{IB} + \dfrac{A'B}{BC}.\overrightarrow{IC}\) (*)
sử dụng dịnh lý đường phân giác \(\dfrac{A'C}{AC}=\dfrac{A'B}{AB}\) và tỉ lệ này bằng với \(\dfrac{BC}{AC+AB}=\dfrac{BC}{b+c}\) (định lý về phân số \(\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a+c}{b+d}\) )
suy ra \(\dfrac{A'C}{BC}=\dfrac{AC}{b+c}=\dfrac{b}{b+c}\) (1)
và \(\dfrac{A'B}{BC}=\dfrac{AB}{b+c}=\dfrac{c}{b+c}\) (2)
Thay (1), (2) vào (*)
ta có \(\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\) (3)
Mặt khác ta lại có \(\dfrac{\overrightarrow{IA'}}{\overrightarrow{IA}}\)=\(-\dfrac{IA'}{IA}\) (do 2 vecto đối nhau)
suy ra \(\overrightarrow{IA'}\)=\(-\dfrac{IA'}{IA}\).\(\overrightarrow{IA}\)=\(-\dfrac{A'C}{AC}\).\(\overrightarrow{IA}\)=\(-\dfrac{a}{b+c}\).\(\overrightarrow{IA}\) (sử dụng tiếp tục định lý đường phân giác nha bạn \(\dfrac{IA'}{IA}=\dfrac{A'C}{AC}\) ) (4)
Từ (3) và (4) ta suy ra \(-\dfrac{a}{b+c}\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\)
loại \(b+c\) trong cả 2 vế ta còn lại
\(-a.\overrightarrow{IA'} = b.\overrightarrow{IB} + c.\overrightarrow{IC}\) \(\leftrightarrow\)\(a.\overrightarrow{IA'} + b.\overrightarrow{IB} + c.\overrightarrow{IC}= \overrightarrow{0}\)
Lời giải:
a) Ta có:
\(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{IA}+\overrightarrow{IB}=2(\overrightarrow{IC}-\overrightarrow{IB})\)
\(\Leftrightarrow \overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{BC}\)
Gọi \(M\) là trung điểm của $AB$ thì \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Rightarrow 2\overrightarrow{BC}=\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}\)
\(\Leftrightarrow 2\overrightarrow{BC}=2\overrightarrow{IM}\Leftrightarrow \overrightarrow{BC}=\overrightarrow{IM}\)
Điểm $I$ là điểm thỏa mãn \(BIMC\) là hình bình hành
b) \(3\overrightarrow {DB}-2\overrightarrow{DC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{DB}+2(\overrightarrow{DB}-\overrightarrow{DC})=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{DB}+2\overrightarrow{CB}=0\Leftrightarrow \overrightarrow{DB}=2\overrightarrow{BC}\)
Điểm $I$ nằm trên đường thẳng $BC$ sao cho $DB=2BC$ và $B$ nằm giữa $D$ và $C$
c)
Ta có: \(\overrightarrow {AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{CB}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}-\overrightarrow{DB}=\overrightarrow{AB}-2\overrightarrow{BC}\)
Từ hai điều trên suy ra \(2\overrightarrow{AI}=\overrightarrow{AD}\Rightarrow \) $A,D,I$ thẳng hàng.
a.
\(\overrightarrow{IA}+2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)=\overrightarrow{0}\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{AB}=0\)
\(\Leftrightarrow\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AB}\)
Vậy I là điểm nằm trên đoạn thẳng AB sao cho \(AI=\frac{2}{3}AB\)
b.
Gọi G là trọng tâm tam giác ABC
\(\overrightarrow{KG}+\overrightarrow{GA}+2\left(\overrightarrow{KG}+\overrightarrow{GB}\right)=\overrightarrow{CG}+\overrightarrow{GB}\)
\(\Leftrightarrow3\overrightarrow{KG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{KG}=\overrightarrow{0}\)
\(\Leftrightarrow\) K trùng G hay K là trọng tâm tam giác
c.
\(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\left(\overrightarrow{MG}+\overrightarrow{GC}\right)=0\)
\(\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=0\Leftrightarrow\overrightarrow{GM}=\frac{1}{4}\overrightarrow{GC}\)
Vậy M là điểm nằm trên đoạn thẳng CG sao cho \(GM=\frac{1}{4}CG\)
a) Giả sử điểm I thỏa mãn:
\(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)\(\Leftrightarrow\overrightarrow{IA}-\overrightarrow{IC}+\overrightarrow{IB}-\overrightarrow{IC}+2\overrightarrow{IB}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{IB}=\overrightarrow{AC}+\overrightarrow{BC}\)
\(\Leftrightarrow\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\).
Xác định véc tơ: \(\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\).
A B C B' K
Dựng điểm B' sao cho \(\overrightarrow{BC}=\overrightarrow{CB'}\).
\(\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CB'}=\overrightarrow{AB'}\).
\(\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}=\dfrac{\overrightarrow{AB'}}{2}\).
Dựng điểm I sao cho \(\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}=\overrightarrow{AK}\) (K là trung điểm của AB').
A B C B' K I
b) Tìm điểm I sao cho: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\) và chứng mịn điểm I cố định.
Có: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{IA}+3\overrightarrow{IB}+2\overrightarrow{CI}\)
\(=\left(\overrightarrow{CI}+\overrightarrow{IA}\right)+\left(\overrightarrow{CI}+\overrightarrow{IB}\right)+2\overrightarrow{IB}\)
\(=\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}\).
Suy ra: \(\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}=\overrightarrow{0}\)\(\Leftrightarrow\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\)
Vậy điểm I xác định sao cho \(\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\) .
Do A, B, C cố định nên tồn tại một điểm I duy nhất.
Theo giả thiết:
Có \(\overrightarrow{MN}=\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\)\(=\overrightarrow{MI}+\overrightarrow{IA}+3\left(\overrightarrow{MI}+\overrightarrow{IB}\right)-2\left(\overrightarrow{MI}+\overrightarrow{IC}\right)\)
\(=2\overrightarrow{MI}+\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}\)
\(=2\overrightarrow{MI}\) (Do các xác định điểm I).
Vì vậy \(\overrightarrow{MN}=2\overrightarrow{MI}\) nên hai véc tơ \(\overrightarrow{MN},\overrightarrow{MI}\) cùng hướng.
Suy ra 3 điểm M, N, I thẳng hàng hay MN luôn đi qua điểm cố định I.
a) Ta có:
\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)
\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)