K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

Trên tia đối của AM lấy điểm M' sao cho M' nằm trên trung điểm EF. Được hình vẽ: undefined

Dễ thấy BC // EF. Ta thấy:

+M và M' lần lượt nằm trên trung điểm của BC ; EF (do cách đựng hình)

+Tam giác ABC cân (do cách dựng hình)

Do đó đường trung tuyến AM của tam giác ABC vuông góc với BC

Nối M và M' lại ta có đoạn thẳng MM'

Ta suy ra đoạn thẳng MM' của vuông góc với BC (do AM' là tia đối của AM)

Áp dụng tính chất: "Hai đường thẳng song song với nhau, nếu đường thẳng thứ nhất vuông góc với một đoạn thẳng thứ 3 thì đoạn thẳng kia cũng vuông góc với đoạn thẳng thứ 3 ấy". Với BC // EF và cạnh thứ 3 MM' vuông góc góc BC ta suy ra: MM' vuông góc với EF hay AM' vuông góc với EF (đpcm)

4 tháng 9 2018

Không có cách làm nào hay hơn à bạn

3 tháng 3 2015

thay câu b vào câu c , ta có : 2b +5 + 7b là số nguyên tố

=> 9b + 5 là số nguyên tố (*)

thay (*) vào câu a , ta có :

9b + 6 chia hết cho b

=> 3( 3b +2 ) chia hết cho b

mà ( 3 ; b ) =1

=>3b + 2 chia hết cho b

lại có :

b chia hết cho b

=>3b chia hết cho b

=>3b + 2 - 3b chia hết cho b

=>2 chia hết cho b 

=> b = 2 hoặc 1 

- nếu b = 1 => thay vào (*) , ta có :

9.1 + 5 là số nguyên tố ( loại )

- nếu b = 2 => thay vào (*) , ta có :

9.2 + 5 là số nguyên tố => a = 2.2 + 5 = 9 ( thỏa mãn )

Vậy a = 9 , b = n thì thỏa mãn đề bài . ^^

 

 

3 tháng 3 2015

Á................. nhầm, b = 2 , sorry nha !!! ^^

22 tháng 5 2018

Bạn tham khảo ở đây nhé

Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

14 tháng 2 2020

bạn vẽ hình ra đi

14 tháng 2 2020

ABCNM

a ) Xét tam giác AMB và tam giác NMC có :

AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )

BM = MC ( vì AM là đường trung tuyến của BC )

=> Tam giác AMB = Tam giác NMC ( c.g.c )

=> Góc ABM = góc NCM ( 2 góc tương ứng )

Mà góc ABM = góc NCM so le trong 

=> CN // AB 

b ) Xét tam giác ABC và tam giác NCB có :

AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )

Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )

AB là cạnh chung 

=> Tam giác ABC = Tam giác NCB ( c.g.c )