K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Hướng dẫn:

Bài tập: Đường thẳng song song với một đường thẳng cho trước | Lý thuyết và Bài tập Toán 8 có đáp án

Do DE//BC theo giả thiết nên vẽ thêm Ax//DE thì

Ax//DE//BC       ( 1 )

Vì D là trung điểm của AB nên AD = BD       ( 2 )

Từ ( 1 ), ( 2 ) suy ra ba đường Ax, DE, BC là ba đường song song cách đều nên nó chắn trên đường thẳng AC hai đoạn thẳng liên tiếp bằng nhau là AE = EC.

14 tháng 8 2023

A B C H E K

a/

Xét tg vuông ABE và tg vuông HBE có

BE chung

\(\widehat{ABE}=\widehat{HBE}\) (gt)

=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

b/

tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B

\(\widehat{ABE}=\widehat{HBE}\)

=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)

c/

Xét tg vuông KBH và tg vuông ABC có

\(\widehat{B}\) chung

AB = HB (cmt)

=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC

Xét tg BKE và tg BCE có

BE chung

\(\widehat{ABE}=\widehat{HBE}\) (gt)

BK=BC (cmt)

=> tg BKE = tg BCE (c.g.c) => EK = EC

d/

Xét tg vuông AKE có

AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất

Mà EK=EC (cmt)

=> AE<EC

 

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE
=>BD là trung trực của AE

b: Xet ΔDAF vuông tại A và ΔDEC vuông tạiE có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE

mà DE<DC

nên AD<CD

d: Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hìnhthang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét hình thang BDEC có

M,N lần lượt là trung điểm của DB và EC

nên MN là đường trung bình

=>MN=(DE+BC)/2

=>DE+4=6

=>DE=2cm

c: Xét tứ giác DECH có

DE//CH

DH//EC

Do đó: DECH là hình bình hành

SUy ra: DH=EC

Xét ΔDBH có MK//BH

nên DK/DH=DM/DB=1/2

=>K là trung điểm của DH

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hìnhthang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét hình thang BDEC có

M,N lần lượt là trung điểm của DB và EC

nên MN là đường trung bình

=>MN=(DE+BC)/2

=>DE+4=6

=>DE=2cm

c: Xét tứ giác DECH có

DE//CH

DH//EC

Do đó: DECH là hình bình hành

SUy ra: DH=EC

Xét ΔDBH có MK//BH

nên DK/DH=DM/DB=1/2

=>K là trung điểm của DH

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc FC

c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF

d: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó:ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng