K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AE+EB=AB

AM+MC=AC

mà AB=AC

và EB=MC

nên AE=AM

hay ΔAEM cân tại A

b: Xét ΔABM và ΔACE có 

AB=AC

\(\widehat{BAM}\) chung

AM=AE

Do đó: ΔABM=ΔACE

Suy ra: \(\widehat{ABM}=\widehat{ACE}\)

c: XétΔABC có AE/AB=AM/AC

nên EM//BC

21 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = MC (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b) Xét t/g BMA và t/g DMC có:

MB = MD (gt)

BMA = DMC ( đối đỉnh)

MA = MC (gt)

Do đó, t/g BMA = t/g DMC (c.g.c)

=> ABM = CDM (2 góc tương ứng)

Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD

Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN

Có: BN // AC (gt)

AB // CN (cmt)

=> AB = CN ( tính chất đoạn chắn)

Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:

AB = CN (cmt)

AM = CM (gt)

Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)

9 tháng 12 2016

a, xét tam giác AMB và tam giác AMC có :

AB=AC (gt)

MB=MC (gt)

AM là cạnh chung

suy ra: tam giác AMB = tam giác AMC (c.c.c)

b,Vì tam giác AMB = tam giác AMC ( câu a)

suy ra : góc B =góc C ( 2 góc tương ứng )

xét tam giác MBE và tam giác MCF có:

M1=M2 ( đối đỉnh )

B =C

MB=MC ( gt)

suy ra :tam giác MBE = tam giác MCF (g.c.g)

vì tam giác MBE = tam giác MCF (chứng minh trên)

ME=MF (2 cạch tương ứng )

xét tam giác AEM và tam giác AFM có :

E1=F1

AM là cạnh chung

ME=MF

suy ra : tam giác AEM = tam giác AFM (c.g.c)

vì tam giác AEM = tam giác AFM ( chứng minh trên)

suy ra :AE=AF

c, gọi điểm cắt nhau của EF và AM 

Vì tam giác AMB = tam giác AMC (câu b)

suy ra : góc A1 = góc A2 ( 2 góc tương ứng ); góc M1 = góc M2 ( 2 góc tương ứng)

xét tam giác AEH và tam giác AFH có :

A1=A2 

AE=AF

AH là điểm chung 

suy ra : tam giác AEH = tam giác AFH (c.g.c)

suy ra góc H1= góc H2 ( 2 góc tương ứng)

mà H1+H2=180 (2 góc kề bù)

suy ra : H1=H2=90

suy ra AM vuông góc với EF

mà M1+M2=180

suy ra M1=M2=90

suy ra AM vuông góc với BC

     mà AM vuông góc với EF

suy ra EF song song với BC ( 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau )

d, Ta có : AMB = NMC ( đối đỉnh )

+) AMB+AMC= 180 ( 2 góc kề bù )

mà AMC=NMC 

suy ra AMB+NMC =180 (3)

mà     AMB+NMC = AMN (4)

Từ (3),(4) suy ra : 3 điểm A,M,N thẳng hàng 

         

9 tháng 12 2016

1, xét tam giác AMB và tam giác AMC có:

AB=AC (gt)

MB=MC (gt)

7 tháng 2 2018

Trả lời giúp mk với . Mai mình thi rồi

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

c: Xét ΔACD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔACD cân tại C

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: BH=BC/2=3(cm)

=>AH=4(cm)

c: Ta có: AH là đường trung tuyến

mà AG là đường trung tuyến

nên A,H,G thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG