Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề bài :
UAM = UMB và φM = 60 độ
=> ABC là tam giác đều.
Từ hình vẽ ta suy ra UAM = U = 220 V
A UAM U UR UL B UC 2n/3
Ta thấy \(u_L\) sớm pha \(\frac{\pi}{2}\) so với u nên u cùng pha với i \(\rightarrow\) mạch xảy ra hiện tượng cộng hưởng ZL=ZC \(\rightarrow\) Z=R
Khi đó \(P=\frac{U^2R}{Z^2}=\frac{U^2R}{R^2}=\frac{U^2}{R}=200W\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Z_L=L\omega=\frac{25.10^{-2}}{\pi}.100\pi=25\Omega.\)
Mach co r, R va ZL khi đó \(Z=\sqrt{\left(R+r\right)^2+Z_L^2}=\sqrt{\left(10+15\right)^2+25^2}=25\sqrt{2}\Omega.\)
Cường độ dòng điện cực đại \(I_0=\frac{U_0}{Z}=\frac{100\sqrt{2}}{25\sqrt{2}}=4A.\)
Độ lệch pha giữa u và i được xác định thông qua \(\tan\varphi=\frac{Z_L}{R+r}=\frac{25}{15+10}=1\)\(\Rightarrow\varphi=\frac{\pi}{4}.\)
hay \(\varphi_u-\varphi_i=\frac{\pi}{4}.\) mà \(\varphi_u=0\Rightarrow\varphi_i=-\frac{\pi}{4}.\)
=> phương trình dao động của cường độ dòng xoay chiều là
\(i=4\cos\left(100\pi t-\frac{\pi}{4}\right)A.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong trường hợp này, do \(r>|Z_L-Z_C|\)
Nên để công suất của mạch cực đại thì R = 0 nhé.
@phynit mình đã lm như thế mà không ra kết quả, bạn có thể giải ra chi tiết công thức tính P sau cùng đó giúp mình đc k
\(Z_L=\omega.L=50\Omega\)
Có: \(U=I.Z_L=50.I\)
Vì mạch chỉ có cuộn cảm thuần L nên u vuông pha với i
\(\Rightarrow (\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)
\( \Rightarrow (\dfrac{200}{U_0})^2+(\dfrac{3}{I_0})^2=1\)
\( \Rightarrow (\dfrac{200}{50.I_0})^2+(\dfrac{3}{I_0})^2=1\)
\(\Rightarrow I_0=5A\)
\(\varphi_i=\varphi_u+\dfrac{\pi}{2}=\dfrac{5\pi}{6}(rad)\)
\(\Rightarrow i = 5\cos(100\pi t + \dfrac{5\pi}{6})\) A
em nghĩ phi của i phải bằng phi u trừ pi/2 chứ ạ