K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\dfrac{9}{16}=\dfrac{7}{16}\)

=>\(\left[{}\begin{matrix}sinx=\dfrac{\sqrt{7}}{4}\\sinx=-\dfrac{\sqrt{7}}{4}\end{matrix}\right.\)

\(A=sin\left(x+\dfrac{\Omega}{3}\right)=sinx\cdot cos\left(\dfrac{\Omega}{3}\right)+cosx\cdot sin\left(\dfrac{\Omega}{3}\right)\)

\(=\dfrac{1}{2}\cdot sinx+cosx\cdot\dfrac{\sqrt{3}}{2}\)

\(=\dfrac{1}{2}\cdot sinx+\dfrac{-3\sqrt{3}}{8}\)

TH1: \(sinx=\dfrac{\sqrt{7}}{4}\)

=>\(A=\dfrac{1}{2}\cdot\dfrac{\sqrt{7}}{4}-\dfrac{3\sqrt{3}}{8}=\dfrac{\sqrt{7}-3\sqrt{3}}{8}\)

TH2: \(sinx=-\dfrac{\sqrt{7}}{4}\)

=>\(A=\dfrac{-1}{2}\cdot\dfrac{\sqrt{7}}{4}-\dfrac{3\sqrt{3}}{8}=\dfrac{-\sqrt{7}-3\sqrt{3}}{8}\)

\(B=sin\left(x-\dfrac{\Omega}{3}\right)=sinx\cdot cos\left(\dfrac{\Omega}{3}\right)-cosx\cdot sin\left(\dfrac{\Omega}{3}\right)\)

\(=sinx\cdot\dfrac{1}{2}-cosx\cdot\dfrac{\sqrt{3}}{2}\)

\(=\dfrac{1}{2}\cdot sinx+\dfrac{3\sqrt{3}}{8}\)

TH1: \(sinx=-\dfrac{\sqrt{7}}{4}\)

=>\(B=\dfrac{1}{2}\cdot\dfrac{-\sqrt{7}}{4}+\dfrac{3\sqrt{3}}{8}=\dfrac{3\sqrt{3}-\sqrt{7}}{8}\)

TH2: \(sinx=\dfrac{\sqrt{7}}{4}\)

=>\(B=\dfrac{1}{2}\cdot\dfrac{\sqrt{7}}{4}+\dfrac{3\sqrt{3}}{8}=\dfrac{3\sqrt{3}+\sqrt{7}}{8}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)

\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) =  - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B =  - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) =  - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) =  - \frac{3}{8}\end{array}\)

12 tháng 10 2018

ghi đề rõ xíu đi

13 tháng 10 2022

\(\Leftrightarrow cos^4x+sin^4x+\dfrac{1}{2}\left[sin\left(3x-\dfrac{pi}{4}+x-\dfrac{pi}{4}\right)+sin\left(3x-\dfrac{pi}{4}-x+\dfrac{pi}{4}\right)\right]-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}\left[sin\left(4x-\dfrac{pi}{2}\right)+sin2x\right]-\dfrac{3}{2}=0\)

=>\(-\dfrac{1}{2}sin^22x-\dfrac{1}{2}+\dfrac{1}{2}\left[-sin\left(\dfrac{pi}{2}-4x\right)+sin2x\right]=0\)

=>\(-sin^22x-1-cos4x+sin2x=0\)

=>\(-sin^22x-1-\left(1-2sin^22x\right)+sin2x=0\)

=>\(-sin^22x-1-1+2sin^22x+sin2x=0\)

=>\(sin^22x+sin2x-2=0\)

=>sin2x-1=0

=>sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

NV
26 tháng 6 2021

1.

Chắc đề là \(sin\left[\pi sin2x\right]=1?\)

\(\Leftrightarrow\pi.sin2x=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sin2x=\dfrac{1}{2}+2k\) (1)

Do \(-1\le sin2x\le1\Rightarrow-1\le\dfrac{1}{2}+2k\le1\)

\(\Rightarrow-\dfrac{3}{4}\le k\le\dfrac{1}{4}\Rightarrow k=0\)

Thế vào (1)

\(\Rightarrow sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{6}+n2\pi\\2x=\dfrac{5\pi}{6}+m2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+n\pi\\x=\dfrac{5\pi}{12}+m\pi\end{matrix}\right.\)

NV
26 tháng 6 2021

2.

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\pi}{4}+k_12\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}+4k\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}+4k_1\end{matrix}\right.\) (2)

Do \(-1\le cos\left(x-\dfrac{\pi}{4}\right)\le1\Rightarrow\left\{{}\begin{matrix}-1\le\dfrac{1}{2}+4k\le1\\-1\le-\dfrac{1}{2}+4k_1\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=0\\k_1=0\end{matrix}\right.\)

Thế vào (2):

\(\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\) chắc bạn tự giải tiếp được

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

11 tháng 9 2023

a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)

c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)

=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)

=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)

NV
22 tháng 3 2021

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

NV
21 tháng 1 2021

\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)

\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)

\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 1 2021

Em cảm ơn ạ

10 tháng 10 2023

Mn ơi cứu tui