Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E M B C H N S
Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)
\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)
- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))
=d(B,(CMN))
=d(A,(CMN))
- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)
Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :
\(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)
\(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)
Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)
Đáp án là B
Tam giác SAB vuông tại A có S A 2 = S B 2 - A B 2 = 4 a 2 nên SA= 2a
Có S A B C = 1 2 A B . A C = 2 a 2
Có V = 1 3 S A . S A B C = 4 a 3 3
S H = S A 2 - A H 2 = a
Thể tích khối chóp S.ABC là:
⇒ Thể tích khối chóp S.DBC là:
Phương pháp:
Tính thể tích V S . A B C
Tính thể tích V S . A M N theo công thức tỉ lệ thể tích
Tính thể tích V A . B C M N và suy ra kết luận
Cách giải:
Xét tam giác SAB và SAC là các tam giác vuông tại A có hai cạnh góc vuông là a và 2a nên
Tam giác SAB vuông tại có đường cao AM
Khi đó
Tương tự
Lại có
Mặt khác
Do đó
Chọn C.
Đáp án B
Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.
⇒ IA=IB=IC=IH=IK
Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.
Suy ra bán kính R= a 2 2
a)
+ Gọi H là hình chiếu của S trên (ABC)
⇒ AH là hình chiếu của SA trên (ABC)
Gọi E là trung điểm BC
H là tâm của Δ đều ABC.
S A B C M N K H
Ta có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC;SA\perp AB\) Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) => tg SAB là tg vuông tại B
Xét tg vuông SAB có
\(SB=\sqrt{SA^2+AB^2}=\sqrt{4a^2+a^2}=a\sqrt{5}\)
\(\Rightarrow S_{SBC}=\frac{SB.BC}{2}=\frac{a\sqrt{5}.a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{2}\)
Trong mp(SBC) dựng \(NK\perp SB\)(K thuộc SB) mà \(BC\perp SB\) => NK//BC
Ta có NS=NC
=> NK là đường trung bình của \(\Delta SBC\Rightarrow NK=\frac{BC}{2}=\frac{a\sqrt{3}}{2}\)
Ta có \(2SM=MB\Rightarrow SM=\frac{MB}{2}\Rightarrow SM=\frac{SB}{3}=\frac{a\sqrt{5}}{3}\)
\(\Rightarrow S_{SMN}=\frac{SM.NK}{2}=\frac{1}{2}.\frac{a\sqrt{5}}{3}.\frac{a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{12}\)
\(\Rightarrow S_{MNBC}=S_{SBC}-S_{SMN}=\frac{a^2\sqrt{15}}{2}-\frac{a^2\sqrt{15}}{12}=\frac{5a^2\sqrt{15}}{12}\)
Trong mp(SAB) từ A dựng đường thẳng \(AH\perp SB\) (H thuộc SB)
Ta có \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
\(\Rightarrow AH\perp\left(SBC\right)\) => AH là đường cao của hình chóp A.MNBC
Xét tg vuông SAB có
\(AB^2=BH.SB\Rightarrow BH=\frac{AB^2}{SB}=\frac{a^2}{a\sqrt{5}}=\frac{a\sqrt{5}}{5}\)
Xét tg vuông ABH có
\(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\frac{5a^2}{25}}=\frac{2a\sqrt{5}}{5}\)
\(\Rightarrow S_{A.MNBC}=\frac{1}{3}.S_{MNBC}.AH=\frac{1}{3}.\frac{5a^2\sqrt{15}}{12}.\frac{2a\sqrt{5}}{5}=\frac{5a^3\sqrt{3}}{18}\)
nguyễn ngọc anh đúng