Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để C là số nguyên thì tử phải chia hết cho mẫu. Ta có:
3n+5 chia hết cho n+7
3(n+7)-16 chia hết cho n+7
Do đó n+7 phải là ước của 16.
Ư(16)={+-1;+-2;+-4;+-8;+-16}
=> n=-6; -8; -5; -9; -3; -11; 1; -15; 9; -23
****
Để Dlaf số nguyên
-) 2n+7 chia hết n+3
n+3 chia hết n+3 vậy 2(n+3)chia hết n+3
vậy 2n +6 chia hết n+3
suy ra (2n+7)-(2n+6)chia hết n+3
suy ra 1 chia hết n+3
vậy n+3 = 1 hoặc -1
suy ra n= -2 hoặc -4 k đúbg mk nha
Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)
Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)
mà \(n\inℤ\Rightarrow n+3\inℤ\)
Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)
Để A là số nguyên thì 2\(⋮\)n-1
=> n-1 \(\in\)Ư(2)= {1;2; -1; -2}
n\(\in\){2;3 ;0; 1}
Vậy...
\(A=\frac{2}{n-1}\) Để A nguyên => 2 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng
n - 1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Mình sẽ làm chi tiết như sau nếu bạn ko hiểu thì tùy
\(C=\frac{6n-1}{3n+2}=\frac{\left(6n+4\right)-5}{3n+2}\)
Để C là số nguyên thì \(3n+2\inƯ\left(-5\right)\)
\(\Rightarrow3n+2=-5;3n+2=5;3n+2=1;3n+2=-1\)
Giải từng trường hợp ra thì sẽ có n thôi nhé
Để C là số nguyên thì 3n+5 chia hết cho n+7
TC: 3n+21-16 chia hết
suy ra 3(n+7)-16 chia hết cho n+7
Vì 3(n+7) chia hết cho n+7 suy ra 16 chia hết cho n+7 suy ra n+7 là ước của 16
Bạn tự làm tiếp đi nhé