
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM
n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)
nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3
nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ
câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)
Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z
nên ta chỉ cần tìm giá trị của n để A chia hết cho5
để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5
nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)
mà 1<n<10 nên n=5(n là số nguyên dương)
vậy giá trị của n thỏa mãn đề bài là 5

Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất
nên /3-x/=0(vì /3-x/ luôn >=0 dấu)
3-x=0
x=3
D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)
nên \x-2\+2=2
\x-2\=0
x-2=0
x=2

Theo giả thiết \(\tan A,\tan B,\tan C\) lập thành cấp số cộng thì ta có : \(\tan A+\tan C=2\tan B\)
\(\Leftrightarrow\tan A+\tan C=\frac{\sin\left(A+C\right)}{\cos A.\cos C}=\frac{\sin B}{\cos A.\cos C}\Rightarrow\frac{2\sin B}{\cos B}=\frac{\sin B}{\cos A.\cos C}\)
\(\Leftrightarrow\frac{2}{\cos B}=\frac{1}{\cos A.\cos C}\Leftrightarrow2\cos A.\cos C=\cos B\)
\(\Leftrightarrow\cos\left(A+C\right)+\cos\left(A-C\right)=\cos B\)
\(\Leftrightarrow-\cos B+\cos\left(A-C\right)=\cos B\Leftrightarrow\cos B=\frac{1}{2}\cos\left(A-C\right)\le\frac{1}{2}\left(2\right)\)
( Vì \(0 <\)\(\cos\left(A-C\right)\le1\) )
Do 0 < B \(\le\pi\Rightarrow\) giá trị nhỏ nhất của \(B=\frac{\pi}{3}\)

a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)

Bài 2
a) 4^100 = (2^2)^100= 2^200
Mà 2^202 > 2^200 => 4^100 < 2^202
b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25 (1)
17^7 > 16^7= (2^4)^7= 2^28 (2)
Từ (1) và (2) => 31^5<17^7

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)
giải pt y'=0
ta có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2
bảng bt
x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2
hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

a,Nx: (x+1)2008>=0 với mọi x
=>20- (x+1)2008< hoặc = 20
=> GTLN của A là 20 tại (x+1)2008=0
=> x+1=0
=> x=-1
Vậy GTLN của A là 20
b,Nx: /3-x/> hoặc= 0 với mọi x
=>1010-/3-x/ < hoặc = 0
=>GTLN của B là 1010 tại /3-x/=0
=>3-x=0
=>x=3
c, Nx : (x-1)2 > hoặc = 0
=> (x-1)2 +90 > hoặc = 90
=> GTNN của C là 90 tại (x-1)2=0
=> x-1=0
=> x=1
Vậy GTNN của C là 90
d, Nx: /x+4/> hoặc =0
=> /x+4/ +2015 > hoặc = 2015 với mọi x
=>GTNN của D là 2015 tại /x+4/=0
=> x+4=0
=> x= -4
Vậy GTNN của D là 2015