K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 10 2019

\(A=\left[3;8\right]\) ; \(B=[10;+\infty)\) ; \(C=(-\infty;3]\cup[7;+\infty)\)

\(A\cap B=\varnothing\) ; \(A\cup C=\left(-\infty;+\infty\right)\)

\(A\backslash B=A=\left[3;8\right]\) ; \(B\backslash C=\varnothing\)

NV
5 tháng 10 2019

Tập C chắc bạn viết nhầm, \(x< -8\) mới đúng, chứ chẳng ai cho vô lý thế kia

\(A=\left[-1;5\right]\) ; \(B=[2;+\infty)\); \(C=\left(-\infty;-8\right)\cup[2;+\infty)\)

\(A\cap B=\left[2;5\right]\) ; \(A\cup C=\left(-\infty;-8\right)\cup[-1;+\infty)\)

\(A\backslash B=[-1;2)\) ; \(B\backslash C=\varnothing\)

NV
8 tháng 10 2019

ĐKXĐ:

a/ \(\left\{{}\begin{matrix}3x+4\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{4}{3}\\x\ne3\end{matrix}\right.\)

b/ \(x^2-5x+6\ne0\Rightarrow\left(x-2\right)\left(x-3\right)\ne0\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}4-x^2\ge0\\\left(x-2\right)\left(x-3\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2\le x\le2\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Rightarrow-2\le x< 2\)

d/ \(\left\{{}\begin{matrix}4-x\ge0\\2x-10\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le4\\x\ge5\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

\(|x-1|>3\Leftrightarrow \left[\begin{matrix} x-1>3\\ x-1< -3\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x>4\\ x< -2\end{matrix}\right.\)

\(\Rightarrow A=\left\{x\in\mathbb{R}|x\in (4;+\infty) \text{hoặc }x\in (-\infty;-2)\right\}\)

\(|x+2|< 5\Leftrightarrow -5< x+2< 5\Leftrightarrow -7< x< 3\Leftrightarrow x\in (-7;3)\)

\(\Rightarrow B=\left\{x\in\mathbb{R}|x\in (-7;3)\right\}\)

Do đó: \(A\cap B=\left\{\in\mathbb{R}|x\in (-7;-2)\right\}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 2:

\(2< |x|\Leftrightarrow \left[\begin{matrix} x>2\\ x< -2\end{matrix}\right.(1)\)

\(|x|< 3\Leftrightarrow -3< x< 3(2)\)

Từ (1);(2) suy ra để $2< |x|< 3$ thì: \(\left[\begin{matrix} 2< x< 3\\ -3< x< -2\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\in (2;3)\\ x\in (-3;-2)\end{matrix}\right.\)

Biểu diễn A qua hợp các khoảng:

\(A=(-3;-2)\cup (2;3)\)

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

a: A=(-7/4; -1/2]

\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)

\(C=\left(\dfrac{2}{3};+\infty\right)\)

b: \(\left(A\cap B\right)\cap C=\varnothing\)

\(\left(A\cup C\right)\cap\left(B\A\right)\)

\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)

\(=\left(4;\dfrac{9}{2}\right)\)

A=(-2;2)

B=[-3;2)

A giao B=(-2;2)

A\B=\(\varnothing\)

B\A=[-3;-2]

\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)