K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Ta có : \(\left(a^{\log_37}\right)^{\log_37}+\left(b^{\log_711}\right)^{\log_711}+\left(c^{\log_{11}25}\right)^{\log_{11}25}=27^{^{\log_37}}+49^{^{\log_711}}+\left(\sqrt{11}\right)^{^{\log_{11}25}}\)

                                                                                         \(=7^3+11^2+25^{\frac{1}{2}}=469\)

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
Áp dụng BĐT Cô-si:

\(2=a+b=\frac{a}{2}+\frac{a}{2}+b\geq 3\sqrt[3]{\frac{a^2b}{4}}\)

\(\Rightarrow \frac{2}{3}\geq \sqrt[3]{\frac{a^2b}{4}}\Rightarrow \frac{8}{27}\geq \frac{a^2b}{4}\)

\(\Leftrightarrow a^2b\leq \frac{32}{27}\Leftrightarrow P\leq \frac{32}{27}\)

Vậy $P_{\max}=\frac{32}{27}$. Giá trị này đạt tại $\frac{a}{2}=b=\frac{2}{3}$

 

NV
27 tháng 12 2020

\(P=\dfrac{1}{log_a\dfrac{a}{b}}+log_bb-log_ba=\dfrac{1}{1-log_ab}+1-log_ba\)

\(=\dfrac{log_ba}{log_ba-1}+1-log_ba\)

Đặt \(log_ba=x\Rightarrow x\ge2\)

\(P=f\left(x\right)=\dfrac{x}{x-1}+1-x\)

\(f'\left(x\right)=\dfrac{-1}{\left(x-1\right)^2}-1< 0\) \(\Rightarrow\) hàm nghịch biến

\(\Rightarrow P\) chỉ tồn tại max (tại \(x=2\)), ko tồn tại min

Đề sai

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

Lời giải:

Gọi $d$ là ƯCLN của $a$ và $b$. Khi đó $a=dx, b=dy$ với $x,y$ nguyên dương và nguyên tố cùng nhau

Ta có:

$d=15$

BCNN$(a,b)=dxy=2835$

$\Rightarrow xy=189$

Mà $x,y$ là 2 số nguyên dương nguyên tố cùng nhau nên $(x,y)=(1,189), (189,1), (27,7), (7,27)$

$\Rightarrow (a,b)=(15,2835), (2835, 15), (405,105), (105,405)$

3 tháng 12 2017

11 tháng 10 2021

Không có max nhé bạn

undefined

undefined

11 tháng 10 2021

Chỗ bbt lấy tới số 2 thôi nhé. Max là 32/27 (khi a=4/3; b=2/3 và hoán vị)

5 tháng 6 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0

⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0

Điều kiện để pt đã cho có 2 nghiệm

Do đó

  S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2