Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+2+2^2+...+2^{2013}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2014}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2014}\right)-\left(1+2+2^2+...+2^{2013}\right)\)
\(\Rightarrow A=2^{2014}-1\)
Vì \(2^{2014}\) và \(2^{2014}-1\) hơn kém nhau 1 đơn vị nên \(2^{2014}-1\) và \(2^{2014}\) là 2 số tự nhiên liên tiếp.
\(\Rightarrow A,B\) là 2 số tự nhiên liên tiếp
\(\Rightarrowđpcm\)
Ta có : \(X=1+2^2+2^4+.....+2^{2010}\)
\(\Rightarrow2^2X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X-X=2^{2012}-1\)
\(3X=2^{2012}-1\)
\(X=\frac{2^{2012}-1}{3}\) (sai đề nhé )
ta có: X=\(1+2+2^2...2^{2010}\Rightarrow2X=2+2^2+...2^{2011}\)
\(\Rightarrow2X-X=\left(2+2^2...2^{2011}\right)-\left(1+2+...2^{2010}\right)\)
\(\Rightarrow X=2^{2011}-1\)
xét hiêu Y-X=\(2^{2011}-\left(2^{2011}-1\right)=1\)
vậy X,Y là 2 số tự nhiên liên tiếp
x = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 + 2 ^ 2016
x . 2 = ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 + 2 ^ 2016 ) x 2
x . 2 = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 2016 + 2 ^ 2017
x . 2 = ( 1+ 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 2015 + 2 ^ 2016 ) + 2 ^ 2017 - 1
x . 2 = x + 2 ^ 2017 - 1
x = 2 ^ 2017 - 1 ( cùng chia cả 2 vế đi x )
Mã y = 2 ^ 2017 lá số hơn 2 ^ 2017 - 1 một đơn vị
=> x và y là 2 số tự nhiên liên tiếp
x = 1 + 2 + 22 + 23 + ... + 22015 + 22016
2 . x = ( 1 + 2 + 22 + 23 + 24 + ... + 22015 + 22016 ) . 2
2 . x = 2 + 22 + 23 + 24 + 25 + ... + 22016 + 22017
x = 2 . x - x = ( 2 + 22 + 23 + 24 + ... + 22015 + 22016 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 22015 + 22016 )
x = 22017 - 1
Do x = 22017 - 1
y = 22017
nên x và y là hai số tự nhiên liên tiếp
Suy ra ( đpcm )
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)
A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)
A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)
A=\(2^{2011}\cdot7+2^{2014}\cdot7\)
A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)
Từ (1) và (2)\(\Rightarrow A⋮3,7\)
Mà ƯCLN(3,7)=1
\(\Rightarrow A⋮3\cdot7=21\)