Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(xy+yz+xz=\frac{2^2-18}{2}=-7\)
\(x+y+z=2\)=> \(z-1=-x-y+1\)
=> \(\frac{1}{xy+z-1}=\frac{1}{xy-x-y+1}=\frac{1}{\left(x-1\right)\left(y-1\right)}\)
Tương tự \(\frac{1}{yz+x-1}=\frac{1}{\left(y-1\right)\left(z-1\right)};\frac{1}{xz+y-1}=\frac{1}{\left(z-1\right)\left(x-1\right)}\)
=> \(S=\frac{x+y+z-3}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=-\frac{1}{xyz-\left(yz+xy+xz\right)+\left(x+y+z\right)-1}\)
\(=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)
Vậy \(S=-\frac{1}{7}\)
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)
\(\Leftrightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=...\\y=...\\z=...\end{matrix}\right.\)
Ta có:\(10=2xyz\)
=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)
\(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)
\(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)
\(=1\)
Vậy P=1
cũng bằng 3
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1