K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

NV
5 tháng 11 2021

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

28 tháng 3 2019

\(A=\sum\sqrt{4x+2\sqrt{x}+1}\)

\(Max_A=+\infty\)

\("="x=y=z=+\infty\)

NM
4 tháng 8 2021

ta có \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)

ta có :\(\sqrt{4x+5}=\frac{\sqrt{9\left(4x+5\right)}}{3}\le\frac{9+4x+5}{2\times3}=\frac{2x+7}{3}\)

tương tự ta sẽ có  ; \(A\le\frac{2x+7}{3}+\frac{2y+7}{3}+\frac{2z+7}{3}=\frac{2}{3}\left(x+y+z\right)+7\le\frac{2}{3}\times3+7=9\)

Vậy GTLN của A=9

dấu bằng xảy ra khi x= y= z =1

DD
4 tháng 8 2021

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3.3=9\)

\(\Rightarrow x+y+z\le3\).

\(A=\sqrt{4x+5}+\sqrt{4y+5}+\sqrt{4z+5}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(4x+5+4y+5+4z+5\right)}\)

\(=\sqrt{3\left[4\left(x+y+z\right)+15\right]}=9\)

Dấu \(=\)khi \(x=y=z=1\).

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 1:

a) Bạn xem lại đề bài hộ mình.

b) Thực hiện biến đổi tương đương:

\((x+y+z)^2\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(xy+yz+xz)\leq 2(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)\geq 0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

BĐT trên luôn đúng do \(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-z)^2\geq 0\\ (z-x)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 2:
\(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)

\(\Rightarrow 2A=\sqrt{16x+8\sqrt{x}+4}+\sqrt{16y+8\sqrt{y}+4}+\sqrt{16z+8\sqrt{z}+4}\)

\(=\sqrt{18x-2(\sqrt{x}-2)^2+12}+\sqrt{18y-2(\sqrt{y}-2)^2+12}+\sqrt{18z-2(\sqrt{z}-1)^2+12}\)

\(\Rightarrow 2A\leq \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12})^2\leq [(18x+12)+(18y+12)+(18z+1)](1+1+1)\)

\(=3[18(x+y+z)+36]=756\)

\(\Rightarrow \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}\leq \sqrt{756}=6\sqrt{21}(2)\)

Từ \((1); (2)\Rightarrow 2A\leq 6\sqrt{21}\Rightarrow A\leq 3\sqrt{21}\)

Vậy \(A_{\max}=3\sqrt{21}\). Dấu bằng xảy ra khi \(x=y=z=4\)

19 tháng 4 2018

Áp dụng bất đẳng thức Bunyakovsky:

\(NL^2=\left(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(4x+2\sqrt{x}+1+4y+2\sqrt{y}+1+4z+2\sqrt{z}+1\right)\)

\(=3\left(4x+4y+4z\right)+3\left(2\sqrt{x}+2\sqrt{y}+2\sqrt{z}\right)+3\left(1+1+1\right)\)

\(=12\left(x+y+z\right)+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+9\)

\(=153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

Mặt khác,theo Bunyakovsky: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)=36\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le6\)

\(\Rightarrow153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le153+36=189\)

\(\Rightarrow NL\le\sqrt{189}\)

Dấu "=" xảy ra khi: \(x=y=z=4\)

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)