\(x\ge0\) ; \(y\ge0\) và x + y = 1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

Ta có : x + y = 1 => y = 1 - x

Do đó: \(0\le x\le1\)

\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)

\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Min A = 1/2

Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)

Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)

\(\Rightarrow A=2x\left(x-1\right)+1\le1\)

Max A =1

Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)

=.= hok tốt!!

17 tháng 8 2018

ADBDT Cauchy:

2(x^2+y^2)>=(x+y)^2

Dau = khi x=y

1 tháng 12 2019

Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.

*Tìm min

Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )

Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)

Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)

\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.

Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)

\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.

*Tìm Max:

Chưa nghĩ ra.

1 tháng 12 2019

Chết,bài tìm min nhầm chút:(dòng 10)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)

Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)

Như vầy nha!

30 tháng 10 2018

giúp mình với cho x+y+z=3 Tìm GTLN xy/(x+3y+2z) + yz/(y+3z+2x) + zx/(z+3x+2y)

9 tháng 8 2020

*) tìm giá trị lớn nhất: từ giả thiết \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}\Leftrightarrow}x^3+y^3\le x^2+y^2=1}\)

maxA=1 \(\Leftrightarrow\hept{\begin{cases}x^3=x^2\\y^3=y^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}}\)

*) tìm giá trị nhỏ nhất \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=1\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{x+y}{\sqrt{2}}\le1\)

do đó \(x^3+y^3\ge\frac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\)theo bđt Bunhiacopxki

\(\left(x^3+y^3\right)\left(x+y\right)=\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\)

\(\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=x^2+y^2=1\)

vậy minA=\(\frac{1}{\sqrt{2}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

13 tháng 11 2018

1

do x,y bình đẳng như nhau giả sử \(x\ge y\)

Ta có:x2018+y2018=2

mà \(x^{2018}\ge0,y^{2018}\ge0\)

\(\Rightarrow x^{2018}+y^{2018}\ge0\)

Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)

Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)

\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)

\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)

Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)

Vậy........................

13 tháng 11 2018

x,y có nguyên đâu mà bạn giải như vậy

20 tháng 11 2019

thanh niên này chắc VIP dài quá:))

** Max 

\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)

Theo bunhia ta có:

\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)

*** Min

Giả sử \(1\ge y\ge x\ge z\)

Ta có:

\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Mặt khác:

\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)

Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)

Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)

Khi đó 

\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.

21 tháng 11 2019

Em có cách này cho phần min nhưng không chắc lắm..

Min:

Giả sử \(x\ge y\ge z\)

\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)

\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)

\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.