Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Okey
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(z+x\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự thì ta có:
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P=2
Theo mk nghĩ đề đúng thì chắc cách giải như zầy
\(\Rightarrow\hept{\begin{cases}x+\sqrt{1+x^2}=\frac{1}{y+\sqrt{1+y^2}}\\y+\sqrt{1+y^2}=\frac{1}{x+\sqrt{1+x^2}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+\sqrt{1+x^2}-\sqrt{1+y^2}+y=0\\y+\sqrt{1+y^2}-\sqrt{1+x^2}+x=0\end{cases}}\)
\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)
áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn