\(\ge\)0 và x+ y+ z= 1. Chứng minh rằng: x+ 2y+ z\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(4\left(x+y\right)\left(y+z\right)\left(1-y\right)\le\left(x+2y+z\right)^2\left(1-y\right)\)

\(\le\frac{1}{4}\left(x+2y+z\right)\left(x+2y+z+1-y\right)^2=x+2y+z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)

1 tháng 11 2016

ngu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleuchó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa

4 tháng 11 2016

im mồm hiu

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

27 tháng 1 2018

Áp dụng BĐ Svac-xơ, ta có 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)

^_^

10 tháng 6 2018

Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)

Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)

Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)

\(\Rightarrow a+b\ge16abc\)

Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)

10 tháng 6 2018

cảm ơn bn

31 tháng 3 2018

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

31 tháng 3 2018

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)