Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left\{\begin{matrix} (x+y)^2=a\neq 0\\ xy=b\end{matrix}\right.\)
Dùng cách biến đổi tương đương.
Ta có: \(A=x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=(x+y)^2-2xy+\frac{(xy+1)^2}{(x+y)^2}\)
\(A=a-2b+\frac{(b+1)^2}{a}\)
\(A\geq 2\Leftrightarrow a-2b+\frac{(b+1)^2}{a}\geq 2\)
\(\Leftrightarrow a^2-2ab+(b+1)^2\geq 2a\)
\(\Leftrightarrow a^2+b^2+1-2ab+2b-2a\geq 0\)
\(\Leftrightarrow (-a+b+1)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(-a+b+1=0\Leftrightarrow x^2+y^2+xy=1\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)
\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)
\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)
Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
a) x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1) - 4x( x - 1) + 4( x - 1)
= ( x - 1)( x- 2)2
Theo mình nó còn có x,y > 0 nữa nha !
Ta có:
\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\)
Áp dụng BĐT Cosi ta có:
\(\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\sqrt{\left(x+y\right)^2\left(\dfrac{1+xy}{x+y}\right)^2}=2\left(1+xy\right)\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2\left(1+xy\right)-2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\dfrac{1+xy}{x+y}\right)^2-2xy\ge2+2xy-2xy=2\)
\(\Rightarrow\)đpcm