Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).
Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)
\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)
\(\Leftrightarrow0\le x+y\le4\).
Do đó m = 0, n = 4.
Vậy m2 + n2 = 16. Chọn A.
\(Ta \) \(có : x^2 +y^2 +xy = 1\)
\(\Leftrightarrow\)\(xy = 1 - x^2 - y^2\)
\(Thay \) \(xy = 1 - x^2 - y^2 \) \(vào \) \(P , ta \) \(được :\)
\(P = 1 - x^2 -y^2\)
\(P = 1 - ( x^2 +y^2 )\)
\(P = - ( x^2 +y^2 )+ 1\)\(\le\)\(1\)
\(Dấu "=" xảy \) \(ra\) \(\Leftrightarrow\)\(x^2+y^2 =0\)
\(\Leftrightarrow\)\(x = 0 \) \(và\) \(y = 0\)
\(Max \) \(P = 1 \)\(\Leftrightarrow\)\(x = 0 ; y = 0\)
\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)
Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)
\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)
\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)
\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)