K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).

Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)

\(\Leftrightarrow0\le x+y\le4\).

Do đó m = 0, n = 4.

Vậy m2 + n2 = 16. Chọn A.

24 tháng 12 2020

Dạ, em cảm ơn

22 tháng 2 2022

Em xin phép nhờ  quý thầy cô và các bạn giúp đỡ với ạ!

 

29 tháng 12 2019

\(Ta \) \(có : x^2 +y^2 +xy = 1\)

\(\Leftrightarrow\)\(xy = 1 - x^2 - y^2\)

\(Thay \)  \(xy = 1 - x^2 - y^2 \)  \(vào \)  \(P , ta \) \(được :\)

\(P = 1 - x^2 -y^2\)

\(P = 1 - ( x^2 +y^2 )\)

\(P = - ( x^2 +y^2 )+ 1\)\(\le\)\(1\)

\(Dấu "=" xảy \) \(ra\)  \(\Leftrightarrow\)\(x^2+y^2 =0\)

\(\Leftrightarrow\)\(x = 0 \) \(và\)  \(y = 0\)

\(Max \)  \(P = 1 \)\(\Leftrightarrow\)\(x = 0 ; y = 0\)

NV
23 tháng 3 2022

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

23 tháng 3 2022

Dạ , em cám ơn thầy Lâm nhiều ạ!