\(\hept{\begin{cases}x+y=a+b\\x^4+y^4=a^4+b^4\end{ca...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Theo bài ra ta có: x4+y4=a4+b4 =>x4-a4=b4-y4 =>(x2-a2)(x2+a2) = (b2-y2)(b2+y2) =>(x-a)(x+a)(x2+a2) = (b-y)(b+y)(b2+y2) (1) 
Ta có: x+y=a+b=>x-a=b-y (2) 
Từ (1) và (2) suy ra 
(b-y)(x+a)(x2+a2) - (b-y)(b+y)(b2+y2) = 0 
=>(b-y) [(x+a)(x2+a2) - (b+y)(b2+y2)] = 0 
Nếu b=y thì x=a, suy ra xn+yn=an+bn 
Nếu (x+a)(x2+a2)-(b+y)(b2+y2)=0 
=>(x+a)(x2+a2)=(b+y)(b2+y2
=>x+a=b+y và x2+a2=y2+b2 (*) 
=>x=b+y-a (3) và x2+a2=y2+b2 (4) 
Thay (3) vào (4) ta được: 
(b+y-a)2+a2=y2+b2 
=>b2+y2+a2+2by-2ab-2ay+a2=b2+y2 
=>2a2+2by-2ab-2ay=0 
=>a2+by-ab-ay=0 
=>a(a-b)-y(a-b)=0 =>(a-b)(a-y)=0 
=>a=b hoặc a=y 
*Nếu a=b từ (*) suy ra x=y 
=> xn+yn=an+bn 
*Nếu a=y từ (*) suy ra x=b 
=>xn+yn=an+bn 
Vậy xn+yn=an+bn 

Lưu ý: biểu thức chỉ đúng với n dương

29 tháng 1 2018

\(thanks\)   bn nhé!!!!!

12 tháng 12 2018

Chieu nha

22 tháng 8 2016

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(a^2+b^2\right)^2}{a+b}\)
\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^4+y^4+2x^2y^2\right)}{a+b}\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Leftrightarrow x^4b^2+y^4a^2-2x^2y^2ab=0\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow x^2b=y^2a\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
\(\Rightarrow\frac{x^{2010}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2\left(x^2+y^2\right)^{1006}}{\left(a+b\right)^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
 

22 tháng 8 2016

Nếu để ý thì bài này dùng coossi sờ vác ngay bước đầu sẽ ngắn đi rất nhiều 

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^