K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 3 2020
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
19 tháng 9 2020
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)
\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)
Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)
Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)
Vậy a và b là hai số chính phương liên tiếp.
11 tháng 4 2017
Thay b^4=(ac)^2 và tương tự với d^4
Từ đó đặt thừa số chung và sẽ ra kết quả!
Ta có:
\(a^2+b^2+4=2ab+4a+4b\)
\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)
\(\Rightarrow\left(a-b+2\right)^2=8a\)
\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)
=> \(\frac{a}{2}\)là số chính phương.
Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với