K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

a, + Nếu p = 3k mà p là số nguyên tố

=> p = 3

=> p + 2 = 5

và p + 10 = 13 (đều là số nguyên tố, chọn)

+ Nếu p = 3k + 1

=> p + 2 = 3k + 3 chia hết cho 3, là hợp số (loại)

+ Nếu p = 3k + 2

=> p + 10 = 3k + 12 chia hết cho 3, là hợp số (loại)

Vậy p = 3

b, Xét 3 trường hợp p = 3k; p = 3k + 1; p = 3k + 2

c, Xét 5 trường hợp 5k; 5k + 1; 5k + 2; 5k + 3; 5k + 4

21 tháng 2 2016

dễ mà bạn 

thử chọn đi . ko nhìu đâu

4 tháng 10 2020

A={7,8,9,11,12,13}

4 tháng 10 2020

giải A={7;8;9;10;11;12;13}

6 tháng 8 2018

a) \(4\frac{7}{10}< 6\frac{7}{10}\)(4 < 6)

b) \(3\frac{4}{15}< 3\frac{11}{15}\)(4/15 < 11/15)

c) \(5\frac{1}{9}>2\frac{2}{5}\)(5 > 2)

d) \(2\frac{2}{3}=2\frac{10}{15}\)(10/15 = 2/3)

6 tháng 8 2018

4 7/10 < 6 7/10

3 4/15 <3 11/15

5 1/9 > 2 2/5

2 2/5 > 2 10/15

12 tháng 8 2016

nhanh giup minh nha 

minh dg can gap den 8h ai tra loi  minh se cho đúng

14 tháng 2 2016

minh không biet

20 tháng 8 2015

Gọi tổng là S

\(S=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)

\(S=1+5.6+5^3.6+....+5^{2007}.6\)

\(S=1+6.\left(5+5^3+...+5^{2007}\right)\)

Vậy S chia 6 dư 1

\(S=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=31.1+31.5^3+....+31.5^{2007}\)

\(S=31.\left(1+5^3+....+5^{2007}\right)\)

Vậy S chia hết cho 31 hay S chia 31 dư 0