K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

3 tháng 11 2021

\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)

<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)

<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)

đặt x+y+z = t 

=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)

=> x=y=z 

ta lại có 

\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)

vì x=y=z  => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

3 tháng 11 2021

gật gật

10 tháng 12 2018

Giải :

Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)

Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2   (1)

                      (2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2                          (2)

Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2

10 tháng 12 2018

huhu!... Mk biết làm roi nha mb :>))

3 tháng 11 2023

x=2024, z= 506, y=0