Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)
=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\)
Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)
=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)
=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)
=> A = \(8+2020=2028\)
Lần sau em nên ghi đúng đề:
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)
=> \(\frac{y+z+t}{x}-n=\frac{z+t+x}{y}-n=\frac{t+x+y}{z}-n=\frac{x+y+z}{t}-n\)
=> \(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3x+3y+3z+3t}{x+y+z+t}=3\)
Mà x + y + z + t = 2020
=> \(\frac{2020-x}{x}=\frac{2020-y}{y}=\frac{2020-z}{z}=\frac{2020-t}{t}=3\)
=> \(\frac{2020}{x}-1=\frac{2020}{y}-1=\frac{2020}{z}-1=\frac{2020}{t}-1=3\)
=> \(\frac{2020}{x}-1+1=\frac{2020}{y}-1+1=\frac{2020}{z}-1+1=\frac{2020}{t}-1+1=3+1\)
=> \(\frac{2020}{x}=\frac{2020}{y}=\frac{2020}{z}=\frac{2020}{t}=4\)
=> \(x=y=z=t=505\)
=> \(P=x+2y-3z+t=505+2.505-3.505+505=505\)
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
Hướng dẫn ông viết mũ nhá =) Ông hãy nhìn bên trên phần mình đăng bài + trả lời . Bẹn có thể thấy các kí tự khó hiểu vl :v Như : Hình ảnh , Tex , ... Hãy nhìn X2 và X2 ấn vô đó , lak ấn đc :VVV
#Mật
=y+z+t/x - n.x/x=z+t+x/y - n.y/y=t+x+y/z - n.z/z=x+y+z/t - n.t/t
=y+z+t/x - n=z+t+x/y - n=t+x+y/z - n=x+y+z/t - n
=y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t=y+z+t+z+t+x+t+x+y+x+y+z/x+y+z+t=3.(x+y+z+t)/x+y+z+t=3
ok bạn tiếp tục làm được nhé cho mih nha
Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)
Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)
Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)
\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)