K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

dvfvgf

14 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

21 tháng 10 2016

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

22 tháng 10 2016

bạn viết gì mà mik chẳng hiểu gì cả

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

31 tháng 12 2015

là câu hỏi tương tự nha bạn

21 tháng 5 2020

Do x, y, z khác 1 và thỏa mãn xyz = 1 nên ta có thế đặt: \(x=\frac{a^2}{bc};y=\frac{b^2}{ca};z=\frac{c^2}{ab}\)

với \(\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\ne0\)

Khi đó BĐT cần chứng minh được viết lại như sau:

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ca\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Áp dụng BĐT Bunhiacopxki ta có: \(\left[\text{∑}_{cyc}\left(a^2-bc\right)^2\right]\left[\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\right]\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\)

Đến đây, ta cần chứng minh: \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\ge1\left(^∗\right)\)

Thật vậy. \(\left(^∗\right)\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge a^4+b^4+c^4\)\(+\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+2ab^2c+2abc^2\right)\ge0\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\)*đúng*

Vậy bất đẳng thức được chứng minh.

21 tháng 5 2020

Vì xyz=1 nên x,y,z \(\ne\)0. Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) thì ta có: \(abc=1\) và \(a,b,c\ne0,1\)

Khi đó BĐT cần chứng minh trở thành

\(\frac{1}{\left(1-a\right)^2}+\frac{1}{\left(1-b\right)^2}+\frac{1}{\left(1-c\right)^2}\ge1\Leftrightarrow\left(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\right)^2\)

\(-2\left[\frac{1}{\left(1-a\right)\left(1-b\right)}+\frac{1}{\left(1-b\right)\left(1-c\right)}+\frac{1}{\left(1-c\right)\left(1-a\right)}\right]\ge1\)

\(\Leftrightarrow\left[\frac{32\left(a+b+c\right)+ab+bc+ca}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow\left[1+\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow1+\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

21 tháng 10 2016

olm có ng` lm r` đó bn qua xem lại

22 tháng 10 2016

http://olm.vn/hoi-dap/question/731102.html

21 tháng 7 2020

đây là bài bất IMO 2008 

Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành 

\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)

Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)

\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

Ta có:

\(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}=xyz\left(\frac{1}{yz\left(1+x^2\right)}+\frac{18}{xz\left(1+y^2\right)}+\frac{4}{xy\left(1+z^2\right)}\right)\)

                                                         \(=xyz\left(\frac{1}{yz+x\left(x+y+z\right)}+\frac{18}{xz+y\left(x+y+z\right)}+\frac{4}{xy+z\left(x+y+z\right)}\right)\)

                                                          \(=xyz\left(\frac{1}{\left(x+y\right).\left(x+z\right)}+\frac{18}{\left(y+x\right).\left(y+z\right)}+\frac{4}{\left(z+x\right).\left(z+y\right)}\right)\)

                                                           \(=xyz.\frac{\left(z+y\right)+18.\left(x+z\right)+4\left(x+y\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)

                                                           \(=\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)(đpcm)