K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

xét từng TH của x,y,z

NV
2 tháng 3 2021

Đặt \(P=xyz\le\dfrac{1}{4}\left(x+y\right)^2z=\dfrac{1}{4}\left(x+y\right)^2\left(2016-x-y\right)\)

Do \(\left\{{}\begin{matrix}x\ge2\\y\ge9\\z\ge1951\\x+y=2016-z\end{matrix}\right.\) \(\Rightarrow11\le x+y\le65\)

Đặt \(x+y=a\Rightarrow11\le a\le65\)

\(4P\le a^2\left(2016-a\right)=-a^3+2016a^2-8242975+8242975\)

\(4P\le\left(65-a\right)\left[\left(a^2-65^2\right)-1951\left(a-11\right)-144051\right]+8242975\le8242975\)

\(\Rightarrow P\le\dfrac{8242975}{4}\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\dfrac{65}{2}\\z=1951\end{matrix}\right.\)

2 tháng 3 2021

Áp dụng BĐT Cô-si với ba số x,y,z không âm :

\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\\ \Rightarrow\dfrac{2016}{3}= 672\ge\sqrt[3]{xyz}\\ \Leftrightarrow xyz \le(672)^3\\ \)

Dấu = xảy ra khi x = y = z = 672

Vậy GTLN của xyz là 6723 khi x = y = z = 672