Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)
\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)
\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)
Bài 1: Áp dụng BĐT AM-GM ta có:
\(1+x\ge2\sqrt{x}\)
\(x+y\ge2\sqrt{xy}\)
\(y+1\ge2\sqrt{y}\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)
\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)
Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)
Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên
\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)
\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)
\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)
\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)
\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)
\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)
a) DK: x>=2; y>=3; z>=5
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-2\sqrt{y-3}\cdot2+4\right)+\left(z-5-2\sqrt{z-5}\cdot3+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)(*)
VT(*) >= 0 với mọi x;y;z TMĐK nên để thỏa mãn (*) thì:
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}}\)
b) x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\) (1)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
- \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow x-2\sqrt{x}+1\ge0\Rightarrow\sqrt{x}\le\frac{x+1}{2}\)(a)
- Tương tự: \(\sqrt{y-1}\le\frac{y-1+1}{2}=\frac{y}{2}\) (b)
- và: \(\sqrt{z-2}\le\frac{z-2+1}{2}=\frac{z-1}{2}\) (c)
- Do đó: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+1+y+z-1}{2}=\frac{x+y+z}{2}\)hay VT(1) <= VP(1) với mọi x;y;z.
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3
- Áp dụng bất đẳng thức Cô si ta có
\left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21+x.21+y.21+y.21+x.1−x2+y.1−x2)2≤
\left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41+41+41+41+1−x2+1−y2)
tức là \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2+y1−x2)2≤(3x2+3y2)(3−x2−y2)
Suy ra x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2+y1−x2≤3.(x2+y2)(3−x2−y2)
\le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3.2(x2+y2)+(3−x2−y2)
hay x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2+y1−x2≤233 (đpcm)
ĐK,x\(\ge1,y\ge1\)
Ta có \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\Leftrightarrow\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x^2-y^2\right)=0\Leftrightarrow\dfrac{x^2+5-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-1-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\left(x-y\right)\left(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)(*)
Ta lại có \(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y>0\)
Vậy (*)\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Vậy \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\) thì x=y