\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

ĐK,x\(\ge1,y\ge1\)

Ta có \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\Leftrightarrow\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x^2-y^2\right)=0\Leftrightarrow\dfrac{x^2+5-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-1-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\left(x-y\right)\left(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)(*)

Ta lại có \(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y>0\)

Vậy (*)\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Vậy \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\) thì x=y

áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn

13 tháng 7 2018

ĐKXĐ: x,y >1

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)

\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

13 tháng 7 2018

Giả sử x=y

Khi đó:

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)

\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)

Luôn đúng 

Vậy ta suy ra đpcm

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

7 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)

\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)

\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

26 tháng 6 2016

a) DK: x>=2; y>=3; z>=5

 \(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-2\sqrt{y-3}\cdot2+4\right)+\left(z-5-2\sqrt{z-5}\cdot3+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)(*)

VT(*) >= 0 với mọi x;y;z TMĐK nên để thỏa mãn (*) thì:

\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}}\)

b) x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\) (1)=> đk: x >=0; y >= 1 ; z >= 2.

Ta có:

  •  \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow x-2\sqrt{x}+1\ge0\Rightarrow\sqrt{x}\le\frac{x+1}{2}\)(a)
  • Tương tự: \(\sqrt{y-1}\le\frac{y-1+1}{2}=\frac{y}{2}\) (b)
  • và: \(\sqrt{z-2}\le\frac{z-2+1}{2}=\frac{z-1}{2}\) (c)
  • Do đó: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+1+y+z-1}{2}=\frac{x+y+z}{2}\)hay VT(1) <= VP(1) với mọi x;y;z.

Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3

23 tháng 3 2021

- Áp dụng bất đẳng thức Cô si ta có

              \left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21​+x.21​+y.21​+y.21​+x.1−x2​+y.1−x2​)2≤

                 \left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41​+41​+41​+41​+1−x2+1−y2)

tức là         \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2​+y1−x2​)2≤(3x2+3y2)(3−x2−y2)

Suy ra          x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2​+y1−x2​≤3​.(x2+y2)(3−x2−y2)​

                                                                                               \le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3​.2(x2+y2)+(3−x2−y2)​

 hay        x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2​+y1−x2​≤233​​  (đpcm)