Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)
\(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)
b) x và y có thể là số vô tỉ
VD: \(x=\sqrt{6};y=-\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)
a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\) ; \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ.
Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.
b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) ; \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)
\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k,y=5k\)
Ta có:
\(xy=60\\ \Rightarrow3k.5k=60\\ \Rightarrow15k^2=60\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6,y=10\\x=-6,y=-10\end{matrix}\right.\)
Với \(x=6,y=10\)
\(\left|x+2y\right|=\left|6+2.10\right|=\left|26\right|=26\)
Với \(x=-6,y=-10\)
\(\left|x+2y\right|=\left|\left(-6\right)+2.\left(-10\right)\right|=\left|-26\right|=26\)
Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:
x + 2y = a/b (1)
2x - y = c/d (2)
Trong đó a, b, c, d là các số nguyên và b, d khác 0.
Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:
2(a/b - 2y) - y = c/d
2a/b - 4y - y = c/d
2a/b - 5y = c/d
Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.
Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.
Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.