Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)
\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)
\(=\frac{1}{x-5}-\frac{1}{x}\)
\(=\frac{5}{x\left(x-5\right)}\)
Ta có: \(x^3-x^2+2=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
Xét: \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)
\(\Rightarrow\)\(x+1=0\)
\(\Leftrightarrow\)\(x=-1\)(t/m)
Vậy tại \(x=-1\) thì:
\(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)
ĐKXĐ \(x\ne0,1,2,3,4,5\)
\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
\(P=\frac{1}{x-5}-\frac{1}{x}\)
\(P=\frac{5}{x\left(x-5\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{6+3x\left(x^2-x-1\right)+2015-4x^3}\)
Theo bài ra: \(x^2-x-1=0\)
\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)
Vậy:...
Mk nhầm đoạn số 6 bạn sửa lại thành x^6 nhé:
\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}\)
Theo bài ra: \(x^2-x-1=0\)
\(\Rightarrow\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)
Vậy:......
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
Giải PT : x2 - 3x + 1 = 0. thay x vào là giải đc