K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)

=> \(\frac{3c-2d}{5c+2d}=\frac{3a-2b}{5a+2b}\)

=> Đpcm

1 tháng 11 2021

Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)

Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)

Khi đó a2 + b2 + c2 = 661

<=> (20k)2 + (15k)2 + (6k)2 = 661

<=> 661k2 = 661

<=> k2 = 1

<=> k = \(\pm1\)

Khi k = 1 => a = 20 ; b = 15 ; c = 6

Khi k = -1 => a = -20 ; b = - 15 ; c = -6

1 tháng 11 2021

Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)

=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)

a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)

\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)

\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)

=>ad=bc

hay a/b=c/d

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)

Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

29 tháng 10 2021

Helpp 

29 tháng 10 2021

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5bk+2b}{5bk-2b}=\dfrac{5k+2}{5k-2}\)

\(\dfrac{5c+2d}{5c-2d}=\dfrac{5dk+2d}{5dk-2d}=\dfrac{5k+2}{5k-2}\)

Do đó: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5c+2d}{5c-2d}\)

Bài 2:

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{4a-3b}{a}=\dfrac{4\cdot bk-3b}{bk}=\dfrac{b\left(4k-3\right)}{bk}=\dfrac{4k-3}{k}\)

\(\dfrac{4c-3d}{c}=\dfrac{4\cdot dk-3d}{dk}=\dfrac{d\left(4k-3\right)}{dk}=\dfrac{4k-3}{k}\)

Do đó: \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)

b: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{3a^2+2b^2}{3c^2+2d^2}=\dfrac{3\cdot\left(bk\right)^2+2b^2}{3\cdot\left(dk\right)^2+2d^2}\)

\(=\dfrac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)

16 tháng 1

còn bài một thì sao anh = ̄ω ̄=