K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

\(f\left(-2\right)=4a-2b+c\)

\(f\left(3\right)=9a+3b+c\)

\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)=-f\left(-2\right)^2\le0\)

p/s: nhớ t nữa ko :>  

6 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(-2\right)=a.\left(-2\right)^2+\left(-2\right).b+c=4a-2b+c\)

\(f\left(3\right)=a.3^2+3.b+c=9a+3b+c\)

\(f\left(3\right)+f\left(-2\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)

\(\Rightarrow f\left(3\right)=-f\left(-2\right)\Rightarrow f\left(3\right)f\left(-2\right)=-\left[f\left(3\right)\right]^2\le0\left(đpcm\right)\)

11 tháng 12 2019

Ta có:

b2=a.c                                            c2=b.d

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)                              \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) (1)

\(\Rightarrow\hept{\begin{cases}\left(1\right)=\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}\\\left(1\right)=\frac{a+b-c}{b+c-d}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\end{cases}}\)

\(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Vậy \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Ta có: \(b^2=a\cdot c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

         \(c^2=b\cdot d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)(3)

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(4)

Từ (3) và (4) \(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(đpcm)

30 tháng 12 2019

tham khảo thôi nhé ko giống y sì đâu

https://olm.vn/hoi-dap/detail/213882782299.html

27 tháng 3 2016

A lớn nhất<=>x lớn nhất<=>|x+5| cũng lớn nhất

Mà |x+5| <= 8

|x+5| lớn nhất<=>|x+5|=8<=>x=-13 hoặc x=3(chọn vì x lớn nhất)

Khi đó A=2.3^2+30=2.9+30=18+30=48

29 tháng 3 2016

sai roi ; vi (-13)^2 > 3^2