K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10

Lời giải:

Áp dụng BĐT AM-GM:

$12=x^2+4+4y\geq 2\sqrt{4x^2}+4y=4x+4y=4(x+y)$
$\Rightarrow x+y\leq 3$

Tiếp tục áp dụng BĐT AM-GM:

$P=x+y+\frac{10}{x+y}=(x+y)+\frac{9}{x+y}+\frac{1}{x+y}$

$\geq 2\sqrt{(x+y).\frac{9}{x+y}}+\frac{1}{x+y}$
$=6+\frac{1}{x+y}\geq 6+\frac{1}{3}=\frac{19}{3}$ (do $x+y\leq 3$)

Vậy $P_{\min}=\frac{19}{3}$

Giá trị này đạt tại $x=2; y=1$

NV
12 tháng 1 2021

\(P=x+y+\dfrac{10}{x+y}=2\sqrt{10}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x^2+y=8\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(\dfrac{1+\sqrt{33-4\sqrt{10}}}{2};\dfrac{2\sqrt{10}-1-\sqrt{33-4\sqrt{10}}}{2}\right)\)

1 tháng 9 2021

Chắc dùng Mincowski

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

27 tháng 11 2019

sai đè nha:4\(\sqrt{yz}\)

27 tháng 11 2019

cây gì lớn nhất hành tinh

NV
23 tháng 4 2021

Nếu tồn tại 1 số bằng 0 \(\Rightarrow P=1\)

Nếu x;y đều dương:

\(P=\dfrac{x^2}{xy+x}+\dfrac{y^2}{xy+y}\ge\dfrac{\left(x+y\right)^2}{2xy+x+y}\ge\dfrac{\left(x+y\right)^2}{\dfrac{1}{2}\left(x+y\right)^2+x+y}=\dfrac{2}{3}\)

\(P_{min}=\dfrac{2}{3}\) khi \(x=y=\dfrac{1}{2}\)

Bài này có thể tìm được cả max:

\(\left\{{}\begin{matrix}y+1\ge1\Rightarrow\dfrac{x}{y+1}\le x\\x+1\ge1\Rightarrow\dfrac{y}{x+1}\le y\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x}{y+1}+\dfrac{y}{x+1}\le x+y=1\)

\(P_{max}=1\) khi \(\left(x;y\right)=\left(0;1\right)\) và hoán vị

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

15 tháng 12 2015

GTLN =3

GTNN = 1

9 tháng 1 2021

\(A=x-2y+3z\left(x,y,z>0\right)\)

\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)

(1) <=> \(5x+5y=10\) <=> x+ y = 2

=> y = 2-x

Từ (1) => \(2x+4\left(2-x\right)+3z=8\) 

=> -2x +3z =0

=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A

=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)

Vậy Amin = -4.