K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:
\(a^{200}+b^{200}=a^{201}+b^{201}\)

\(\Rightarrow a^{200}(a-1)+b^{200}(b-1)=0(1)\)

\(a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Rightarrow a^{201}(a-1)+b^{201}(b-1)=0(2)\)

Lấy $(2)-(1)$ suy ra:

\((a-1)(a^{201}-a^{200})+(b-1)(b^{201}-b^{200})=0\)

\(\Leftrightarrow a^{200}(a-1)^2+b^{200}(b-1)^2=0\)

Ta thấy $a^{200}(a-1)^2\geq 0; b^{200}(b-1)^2\geq 0$ với mọi $a,b$

Do đó để tổng của chúng bằng $0$ thì:

\(a^{200}(a-1)^2=b^{200}(b-1)^2=0\)

$\Rightarrow a=0$ hoặc $a=1$; $b=0$ hoặc $b=1$

Suy ra $(a,b)=(1,1); (0,0); (1,0); (0,1)$

$\Rightarrow B=a^{2019}+b^{2020}$ có thể nhận những giá trị là $0; 2; 1$

22 tháng 9 2019

ta có: a200 + b200 = a201 + b201 = a202 + b202

-----> a200 + b200 + a202 + b202 = 2.a201 + 2.b201

-----> a200 - 2.a201 + a202 + b200 - 2.b201 + b202 = 0

----> a200.(1-a)2 + b200. (1-b)2 = 0

mà \(a^{200}.\left(1-a\right)^2\ge0;b^{200}.\left(1-b\right)^2\ge0.\)

a và b là các số thực không âm

----> (1-a)2 = 0 ----> a = 1

(1-b)2 = 0 ----> b= 1

----> B =a2019 + b2020 = 1+1 = 2

22 tháng 9 2019

GIẢI

\(a^{200}+b^{200}=a^{201}+b^{201}\)

\(\Rightarrow a^{200}\left(a-1\right)+b^{200}\left(b-1\right)=0\left(1\right)\)

\(a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Rightarrow a^{201}\left(a-1\right)+b^{201}\left(b-1\right)=0\left(2\right)\)

Ta lấy ( 2 ) - ( 1 ) suy ra :
\(\left(a-1\right)\left(a^{201}-a^{200}\right)+\left(b-1\right)\left(b^{201}-b^{200}\right)=0\)

\(\Leftrightarrow a^{200}\left(a-1\right)^2+b^{200}\left(b-1\right)^2=0\)

Ta thấy : \(a^{200}\left(a-1\right)^2\ge0;b^{200}\left(b-1\right)^2\ge0\) với mọi a , b 

Do đó để tổng của chúng bằng 0 thì :

\(a^{200}\left(a-1\right)^2=b^{200}\left(b-1\right)^2=0\)

\(\Rightarrow a=0\) hoặc \(a=1\) ; \(b=0\) hoặc \(b=1\)

Suy ra \(\left(a,b\right)=\left(1,1\right);\left(0,0\right);\left(1,0\right);\left(0,1\right)\)

\(\Rightarrow B=a^{2019}+b^{2020}\) có thể nhận những giá trị \(0;2;1\)

Chúc bạn học tốt !!!

27 tháng 12 2020

Ta có \(\left(a^{201}+b^{201}\right)^2=\left(a^{200}+b^{200}\right)\left(a^{202}+b^{202}\right)\Leftrightarrow2a^{201}b^{201}=a^{200}b^{202}+a^{202}b^{200}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\).

Khi đó \(a^{200}=a^{201}\Leftrightarrow a=1\).

Do đó P = 2.

20 tháng 12 2018

\(a^{200}+b^{200}=a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Leftrightarrow a,b\in\left\{\left(0;1\right),\left(0;0\right),\left(1;0\right),\left(1;1\right)\right\}\)

\(\Rightarrow P=a^{2006}+b^{2006}\in\left\{1;0;2\right\}\)

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

4 tháng 3 2018

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

23 tháng 7 2020

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))