Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\Rightarrow a+b+c=18\)
Có: BDT
\(\Leftrightarrow\sum_{cyc}\left(\frac{b+c+5}{a+1}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a+b+c-a+5}{a+1}\right)\ge\frac{51}{7}\)(1)
Đặt tiếp tục: \(\left\{{}\begin{matrix}m=a+1\\n=b+1\\p=c+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sum_{cyc}\left(\frac{24-m}{m}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{24}{m}-1\right)\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge21\cdot\frac{3}{7}=9\)
\(\left(\frac{m}{n}-2+\frac{n}{m}\right)+\left(\frac{p}{m}-2+\frac{m}{p}\right)+\left(\frac{n}{p}-2+\frac{p}{n}\right)\ge0\)
\(\Leftrightarrow\frac{\left(m-n\right)^2}{mn}+\frac{\left(p-m\right)^2}{pm}+\frac{\left(n-p\right)^2}{pn}\ge0\)(đúng)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\)
BĐT
\(\Leftrightarrow\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{a+b+c-a+5}{a+1}+\frac{a+c+b-b+5}{b+1}+\frac{a+b+c-c+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{24-\left(a+1\right)}{a+1}+\frac{24-\left(b+1\right)}{b+1}+\frac{24-\left(c+1\right)}{c+1}\ge\frac{51}{7}\)(1)
Đặt tiếp: \(\left\{{}\begin{matrix}a+1=m\\b+1=n\\c+1=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
(1)\(\Leftrightarrow\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{3}{7}\left(m+n+p\right)\)( do m+n+p>0)
\(\Leftrightarrow3+\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{m}{p}+\frac{p}{m}\ge\frac{3}{7}\left[\left(a+b+c\right)+3\right]\)
\(\Leftrightarrow\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{p}{m}+\frac{m}{p}-6\ge0\)
Tới đây chắc bn làm đc rồi
\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)
Vậy ta cần chứng minh Bđt (1) , ta có:
\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)
\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)
\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)
\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)
Vậy Bđt (1) đúng =>Đpcm
\(VT+3=\left(x+2y+3z+6\right)\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
= \(24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\ge\dfrac{9}{3+x+2y+3z}=\dfrac{9}{21}\)
\(\Rightarrow VT\ge\dfrac{24.9}{21}-3=\dfrac{51}{7}\)
dấu = xảy ra khi x=2y=3z=6 hay x=6,y=3,z=2
Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18
\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)
Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\)
Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)
\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)
\(=\frac{24.9}{18+3}-3=\frac{51}{7}\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)
Do đó:
\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)
\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :
\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)
\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)
Cộng theo vế 3 đẳng thức trên ta được :
\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)
\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath
a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)
\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)
\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)
Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:
\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)
C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)
\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))
\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)
Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)
Cộng vế theo vế ta có:
\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)
\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)
P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !