\(\frac{1}{x^2+2}+\frac{1}{y^2+2}+\frac{1}{z^2+2}=\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Đừng để bị đánh lừa, đưa bài toán này về cơ bản bằng cách đặt \(\left(x^2+2;y^2+2;z^2+2\right)\rightarrow\left(a,b,c\right)\)

thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}\).tìm max của \(sigma\frac{1}{\sqrt{a-2}}\) đến đây nhường chủ tus 

23 tháng 9 2017

Nhìn lại lịch sử và đào ra bài này :v cái đó đặt ẩn rồi chuyển qua cũng k đẹp đâu, tham khảo :|

enter image description here

28 tháng 4 2020

Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1

Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)

Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)

Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)

\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*

Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)

Đẳng thức xảy ra khi x = y = z = 2

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)

Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng.Vậy ta có đpcm

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

8 tháng 4 2021

Áp dụng bđt bunhiacopxki, ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)

=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)

CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)

\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)

=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)

=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)

\(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)

\(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra <=> x = y= z = 1/2

Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2

NV
25 tháng 11 2019

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 11 2019

Căn bậc hai. Căn bậc ba

21 tháng 9 2021
Tôi khônh biết tôi học lớp 3

Tui cũng ko bt, tui đang học lớp 6

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều