\(\sqrt{x}+\sqrt{xy+}\sqrt{y}\)

 

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Ta có

\(2+2x+2y=2\sqrt{x}+2\sqrt{y}+2\sqrt{xy}\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow x=y=1\)

\(\Rightarrow x^{2013}+y^{2013}=1+1=2\)

15 tháng 12 2016

\(2+2x+2y=2\sqrt{x}+2\sqrt{xy}+2\sqrt{y}\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y}=1\\\sqrt{x}-\sqrt{y}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

\(\Rightarrow x^{2013}+y^{2013}=1+1=2\)

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, TRẦN MINH HOÀNG, Dũng Nguyễn, Nhã Doanh, hattori heiji, ...

a: \(A=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

b: \(x=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

\(A=\dfrac{2\sqrt{\sqrt{2}-1}}{\sqrt{2}-1+1}=\sqrt{2\left(\sqrt{2}-1\right)}\)

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

28 tháng 10 2018

Mysterious Person, Nguyễn Thanh Hằng, Dương Nguyễn, @Nk>↑@, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Fa Châu De, Nguyễn Quang Minh, Khánh Như Trương Ngọc, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Hoàng Phong, ...

28 tháng 10 2018

khocroikhocroikhocroi Trời ơi sao ai cũng thích nhờ mình giải Toán lớp 9 vậy trời.

bucminhbucminhMình mới học lớp 8 à sao giúp được bạn.

huhuChắc mấy người khác giúp được đấy chớ bài này ngoài tầm kiểm soát của tớ rồi.

Mashiro Shiina, Arakawa Whiter,... giúp bạn Nguyễn Thu Linh với

20 tháng 4 2017

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1

8 tháng 3 2018

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

8 tháng 3 2018

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

1 tháng 7 2017

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

5 tháng 7 2017

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

từ cái đầu=>x-xy+y-xy=(1-x)(1-y)

<=>x+y-2xy=xy-x-y+1

<=>2(x+y)=3xy+1

\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)

\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)

với 3xy-1<(=)0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)