K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Đáp án C

Ta có: 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2  (Bất đẳng thức Bunhia Scopky).

(ngoài ra các em có thể thế và xét hàm).

Do đó P ≥ 5.

7 tháng 7 2018

Đáp án D

Ta có  m a x [ 1 ; 2 ]   y + m i n [ 1 ; 2 ]   y = y ( 1 ) + y 2 = m + 1 2 + m + 2 3 = 16 3 ⇒ 5 m + 7 6 = 16 3

⇔ 5 m + 7 = 32 ⇒ m = 5

20 tháng 8 2017

Đáp án C.

Ta có

1 = x + y ≥ 2 x y ⇒ x y ≤ 1 2 ⇒ 0 ≤ x y ≤ 1 4  

⇒ P = x 2 + x + y 2 + y x y + x + y + 1 = x + y 2 − 2 x y + 1 x y + 1 + 1 = 2 − 2 x y x y + 2  

Đặt t = x y ⇒ t ∈ 0 ; 1 4 ⇒ P = 2 − 2 t t + 2 = f t  

Bảng biến thiên:

=>  M + m = 5 3

7 tháng 12 2019

10 tháng 9 2019

Đáp án C

Áp dụng bất đẳng thức Bunhiacopxki,

ta có  2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 ⇒ P ≥ 5

6 tháng 3 2016

Sai cậu à, mình cũng nhập vào số 5, nhưng thật tiếc là sai

31 tháng 8 2019

Đáp án B

 

BBT ở hình vẽ bên:

29 tháng 3 2018

ĐK:

Ta có

log 3 1 - y x + 3 x y = 3 x y + x + 3 y - 4

Xét hàm số f ( x ) = log 3 t + 3 t t > 0

có f ' ( t ) = 1 t ln 3 + 3 > 0 ; ∀ t > 0  nên hàm số đồng biến trên 0 ; + ∞

Kết hợp (*) suy ra

Xét P = x + y ⇒ x = P - y  thay vào (**) ta được

Ta tìm giá trị nhỏ nhất của g ( y ) = 3 y 2 - 2 y + 3 3 y + 1  trên (0;1)

Ta có

Giải phương trình

Lại có g ' ( y ) < 0 ∀ y ∈ 0 ; - 1 + 2 3 3

g ' ( y ) > 0 ∀ y ∈ - 1 + 2 3 3 ; 1

Hay g'(y) đổi dấu từ âm sang dương tại y = - 1 + 2 3 3  nên

⇒ P m i n = 4 3 - 4 3

Chọn đáp án A.

30 tháng 4 2019

Đáp án A

21 tháng 8 2018

 

Đáp án D

Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0   (*)

Đặt x + y = u x y = v  ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0  gải ra ta được  u = v + 2 + v 2 + 28 v + 4 4

Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18  , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18  ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0  với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 )  trong đó t 0 = m i n t = m i n ( x y + y x )  với x,y thỏa mãn điều kiện (*).

Ta có :

t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2

Vậy  m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4