Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{4a+2b+3}+\frac{1}{4b+\frac{2}{c}+3}+\frac{1}{2a+\frac{4}{c}+3}\)
Đặt \(\left(2a;2b;\frac{2}{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow x^2y^2z^2=\frac{8ab}{c}=1\Rightarrow xyz=1\)
\(P=\frac{1}{2x^2+y^2+3}+\frac{1}{2y^2+z^2+3}+\frac{1}{2z^2+x^2+3}\)
\(P=\frac{1}{x^2+y^2+x^2+1+2}+\frac{1}{y^2+z^2+y^2+1+2}+\frac{1}{z^2+x^2+z^2+1+2}\)
\(P\le\frac{1}{2xy+2x+2}+\frac{1}{2yz+2y+2}+\frac{1}{2zx+2x+2}=\frac{1}{2}\)
\(\Rightarrow P_{max}=\frac{1}{2}\Rightarrow S=4\)
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
\(\frac{1}{a}\ge1-\frac{2}{2b+1}+1-\frac{3}{3c+2}=\frac{2b-1}{2b+1}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\)
Tương tự: \(\frac{2}{2b+1}\ge\frac{a-1}{a}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\)
\(\frac{3}{3c+2}\ge\frac{a-1}{a}+\frac{2b-1}{2b+1}\ge2\sqrt{\frac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\)
Nhân vế với vế:
\(\frac{6}{a\left(2b+1\right)\left(3c+2\right)}\ge\frac{8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)}{a\left(2b+1\right)\left(3c+2\right)}\)
\(\Rightarrow\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\frac{3}{4}\)