Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
Từ giả thiết của bài toán, ta biến đổi như sau:
\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với
\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được
\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)
\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)
\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)
\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)
Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương )
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
...
Chứng minh cái này đi: \(\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{2}{3}a+\frac{2}{3}\) ( gợi ý: bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\left(a+1\right)\ge0\))
Tương tự với 2 ẩn kia \(\Rightarrow\)\(\Sigma\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{8}{27}\Pi\left(a+1\right)\ge\frac{64}{27}\sqrt{abc}\ge\frac{64}{27}\)
dấu "=" xảy ra khi \(a=b=c=1\)
Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)
\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)
Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\) \(\left(1\right)\)
Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)
\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)
\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\) (Do a2+b2+c2=1) \(\left(2\right)\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\) Tự chứng minh \(\left(3\right)\)
Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)
Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Ta co:
\(\left(1+a^2\right)^2\le\left(1+a\right)\left(1+a\right)=\left(1+a\right)^2\)
\(\Rightarrow1+a^2\le1+a\)
The same:
\(1+b^2\le1+b\)
\(1+c^2\le1+c\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\le\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\frac{\left(3+a+b+c\right)^3}{27}=\frac{6^3}{27}=8\)
Ta lai co:
\(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{27}{27}=1\)
\(abc\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\le8\)
Dau '=' xay ra khi \(a=b=c=1\)
Ta co:
\(abc\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\frac{2a\left(1+a^2\right)2b\left(1+b^2\right)2c\left(1+c^2\right)}{8}\le\frac{\frac{\left[\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\right]^2}{64}}{8}\le\frac{\frac{\left(a+b+c+3\right)^{12}}{27^4}}{512}=\frac{\frac{6^{12}}{27^4}}{512}=8\)
Dau '=' xay ra khi \(a=b=c=1\)